本文档是公认的手稿版本的已发表作品,该作品以最终形式出现在《物理化学杂志》,版权所有2021美国化学学会后,在同行评审和发行者的技术编辑后。要访问最终编辑和发布的工作,请参见https://dx.doi.org/10.1021/acs.jpclett.1c02064 postprint:Macewicz l。,Pyrchla K.,Pyrchla K.,Bogdanowicz R.,Sumanasekera R.,Sumanasekera G.,Jasinski G.B.,化学蒸气运输途径向黑色磷纳米骨和纳米骨骼,《物理化学杂志》,第1卷。12,ISS。 34(2021),pp。 8347-835412,ISS。34(2021),pp。8347-8354
摘要:块共聚物的定向自组装(DSA)是用于构图sub-10 nm特征的最有希望的图案技术之一。但是,在如此小的特征大小上,为DSA过程制造指导模式变得越来越困难,并且有必要探索DSA的替代指导方法,以实现长期有序的对齐方式。在这里,我们报告了三封闭共聚物的自我对准组装,聚(2-乙烯基吡啶)-b-丙烯 - b-polystyrene- b-poly(2-乙烯基吡啶)(p2vp- b -PS-b -ps- b -p2vp)在中性石墨烯纳米骨上的含量为p2v的中性石墨烯含量(p2vp- b -ps- b -p2vp)通过溶剂蒸气退火。组装的P2VP-B-PS-B-P2VP在石墨烯基板上表现出远距离的一维对准,沿垂直于石墨烯和基板边界的方向,其半迹尺寸为8 nm,这极大地阐明了传统化学化学上的化学上层状dsa所需的光刻分辨率。用石墨烯条纹之间的差距从10到100 nm不等,可以证明一个宽的处理窗口,从而克服了对指导模式宽度的限制,以具有相应的域间距。将间隙降低到10 nm时,P2VP-B -PS-B -P2VP在石墨烯和底物上形成了直线模式。蒙特卡洛模拟表明,在石墨烯纳米容器上的三嵌段共聚物的自我对准组件分别在石墨烯和SIO 2上的平行和垂直层片的边界上进行引导。模拟还表明,系统的肿胀允许链条快速重新排列,并快速退火任何未对准的晶粒和缺陷。在模拟中系统地研究了SIO 2和P2VP之间的相互作用强度对自组装的影响。关键字:石墨烯,三嵌段共聚物,溶剂蒸气退火,一维组装
图 4. (a) PDMS 上硅纳米带的可视化马赛克图像。红色框表示成像区域。(b) 基于主硅峰面积的硅纳米带 3-D 图像。(c) 基于硅峰位置分布的拉曼图像(蓝色为无应变硅,红色为应变硅)。(d) 基于与典型硅光谱的相关性的拉曼图像(绿色区域为典型硅,蓝色区域为荧光杂质)。(e) 代表性光谱显示了 4c 中拉曼光谱的偏移(应变)。(f) 4d 中代表性光谱显示了荧光。
随着技术的不断发展,由硅制成的传统晶体管使设备变得更小,更强大,正面临着局限性。为了克服这些挑战,正在探索包括FinFET和GNRFET在内的新型晶体管。finfets以3D设计,以改善对电流的控制,非常适合非常小的设备。gnrfets,由石墨烯(非常薄的材料)制成,承诺效率更好,速度更快,并且由于其独特的特性而使用的功率更少。本文通过分析它们在电路中的性能进行比较,专门针对一个称为“完整加法器”的常用电路。我们发现,尽管FinFET非常适合当前需求,但GNRFET提供了更好的能源效率,并且可能是电子产品的未来,尤其是在节省功率很重要的设备中。分析强调了如何将每种类型的晶体管应用于下一代电子产品中,帮助工程师设计更强大和节能的设备。关键字:FinFET,GNRFET,纳米级晶体管,石墨烯Nanoribbons,3D栅极结构,静电控制,短通道效应,高载流子迁移率,低功率操作,半导体技术,小型技术,小型技术,小型化,设备制造,高级CMOS,高级CMOS,下一代电子产品。1。简介
我们研究了三角形晶格上的广义多轨紧密结合模型,该系统在各种二维材料中普遍存在,并且与模拟过渡金属二进制二进制二进制型单层单层尤其重要。我们表明,自旋轨道耦合与不同对称性机制之间的相互作用导致四个不同的拓扑阶段的出现[Eck,P。等。,物理。修订版b,107(11),115130(2023)]。值得注意的是,这种相互作用还触发具有杰出特征的轨道霍尔效应。此外,通过采用Landauer-Büttiker公式,我们确定在轨道大厅绝缘阶段,轨道角动量由具有特定终止的纳米骨中存在的边缘状态携带。我们还表明,正如预期的那样,它们对属于一阶拓扑绝缘体的边缘状态的疾病没有拓扑保护。
纳米级过渡金属三卡构基化金属元素(TMTC)(例如TIS 3)对基本研究和应用开发都显示出很大的潜力,但是他们的自下而上的合成策略仍应实现。在这里,我们探索了TIS 3的化学蒸气沉积(CVD)合成,其晶格各向异性使B轴的优先生长使矩形纳米片或纳米虫具有具有生长温度可调节的长宽比的矩形纳米片或纳米骨。获得的纳米结构,同时保持光谱和结构特性,如原始的半导体TIS 3的特性,表现出较高的电导率和超低载体激活屏障,这是纳米级导体。我们的实验和计算结果表明,CVD生长的TIS 3中存在S 2 2-空缺,导致重型N型掺杂到退化水平。此外,预计将半导体特性通过从环境中用氧原子钝化S 2 2-空位来恢复。这项工作因此预示着使用缺陷工程的三卡氏菌元素半导体构建纳米级电子的诱人可能性。
我们研究了使用Lindblad-Von Neumann Master方程形式主义在耗散存在的情况下,在耗散存在下,石墨烯纳米容器具有扶手椅边缘的光电导率响应。我们建议通过用光线沿纳米替宾的有限方向线性极化的光照明系统来控制传输性能,同时沿着扩展方向进行探测。我们证明,最大的稳态光电流是针对与纳米替比宽度成正比的电子带隙略有蓝色的驱动频率。我们比较了在相干和不连贯的光线下的光电导率,得出的结论是,蓝色驱动驾驶的光电导率的增强取决于驾驶项的连贯性。基于此结果,我们提出了一个切换协议,以在几个picseconds的时间尺度上快速控制光电流。此外,我们建议设计用于石墨烯纳米甲和高t c超导体的异质结构的设计,该设计是作为晶体管运行的,作为迈向下一代相干电子设备的一步。
纳米级过渡金属三硫属化物如 TiS 3 在基础研究和应用开发方面都表现出巨大的潜力,但它们的自下而上的合成策略尚未实现。在这里,我们探索了 TiS 3 的化学气相沉积 (CVD) 合成,其晶格各向异性使得其能够沿 b 轴优先生长,从而得到长宽比可通过生长温度调节的矩形纳米片或纳米带。所获得的纳米结构在保持与原始半导体 TiS 3 一样的光谱和结构特征的同时,表现出高电导率和超低载流子活化势垒,有望作为纳米级导体。我们的实验和计算结果表明,CVD 生长的 TiS 3 中 S 2 − 2 空位的存在是造成重 n 型掺杂直至简并能级的原因。此外,预计通过用环境中的氧原子钝化 S 2 − 2 空位可以恢复半导体性能。因此,这项工作预示着利用缺陷工程三硫属化物半导体构建纳米级电子器件的诱人可能性。
摘要对石墨烯纳米纤维(GNR)中量子限制效应(GNR)产生的异常电子结构的直接控制密切相关,这与色带结构所施加的几何边界条件密切相关。除了替代掺杂原子的组成和位置外,单位细胞的对称性,GNR的宽度,长度和终止,控制其电子结构。在这里,我们提出了一种合理的设计,该设计将这些相互依存的变量集成在模块化自下而上的合成中。我们的混合化学方法取决于催化剂转移聚合(CTP),该聚合能够建立对长度,宽度和终端组的良好控制。与表面辅助的循环氢化步骤相辅相成,由基质辅助直接(MAD)传输方案,几何和在聚合物模板中编码的功能处理方案独特地启用,并忠实地映射到相应的GNR的结构上。键合分辨扫描隧道显微镜(BRSTM)和光谱学(STS)验证了聚合物模板设计与GNR电子结构之间的稳健相关性。
能量转化为化学能。[1] 后者尤其因碳氮化物光催化水分解的演示而加速。[2] 从那时起,人们开发出了许多不同的聚合物半导体,包括石墨烯类似物、共价有机框架或共轭梯形聚合物。[3,4] 通过控制 π 共轭的空间延伸、结构化、杂原子的类型和含量以及/或缺陷,可以调整它们的最终性质。扩展 π 共轭体系的合成,尤其是模型碳材料,通常需要高温,导致缺乏对结构的合理化学控制。因此,有必要寻找新的共轭碳质材料途径,避免恶劣条件,从而更好地控制所得结构。温和条件下的合成需要新的概念,例如新的单体或智能缩合-芳香化途径。这可以为更好地设计共价半导体提供必要的工具。一个很好的例子是 Müllen 和 Feng 合成的石墨烯纳米带。[5–7] 他们利用脱卤-环脱氢反应或狄尔斯-阿尔德反应