以寡素转移方法的意图,诱导化疗始于顺铂和垂体。3个周期后,所有病变都有稳定性。多学科委员会决定对原始肺部病变进行无线电化学放射疗法,然后在两种肾上腺上进行立体定向身体放疗(SBRT)。胸部化学放射疗法在47天内在33个部分中递送了66 Gy的剂量。肺的剂量测定值的平均剂量为15 Gy,V20为24%。患者耐受性很好。在化学放射疗法结束时进行的宠物发现右下叶中有5 mm的超代谢结节,左肾上腺进行了进行性疾病。患者开始使用Pembrolizumab(200 mg/Q3W)。对照脑MRI显示出独特的左额叶病变,并通过放射外科治疗(伽马刀)。
摘要:环保溶液加工和光活性材料的低成本合成是有机太阳能电池商业化(OSC)的重要要求。尽管已经开发了各种水溶性受体,但可供处理的聚合物供体的可用性仍然非常有限。尤其是,现有聚合物供体的总体最高占用的分子轨道(HOMO)能级限制了功率转化效率(PCE)的进一步提高。Here, we design and synthesize two water/alcohol- processable polymer donors, poly[(thiophene-2,5-diyl)- alt -(2-((13-(2,5,8,11-tetraox- adodecyl)-2,5,8,11-tetraoxatetradecan-14-yl)oxy)-6,7-difluoroquinoxaline-5,8-diyl)] (p(qx8o-t))和poly [(硒苯2,5-二烯基) - alt-(2 - (((13-(2,5,5,8,11-(2,5,8,11-tetraoxadodec- yl))-2,5,5,8,8,11-tetraoxateTradecan-14-yl-14-yl)-6,7-6,7-二氟quinoxaline-5,5,8-piyylyyyyl)寡醇(乙二醇)(OEG)侧链,具有深HONO能级(〜- 5.4 eV)。以降低成本的几个合成和纯化步骤来实现聚合物的合成。理论计算发现,与烷基化的烷基化对应物相比,基于OEG的聚合物中观察到的带隙降低的介电环境变化是造成观察到的带隙降低的。这项研究为低成本,可加工的聚合物供体设计和具有高V OC的水性处理的OSC的制造提供了重要的线索。关键字:寡素(乙烯甘油),低成本,可供处理的全聚合物太阳能电池,生态兼容性,开路电压值得注意的是,基于p(qx8o-t)和poly [(n,n,n'--- bis(3-(2-(2-(2-(2-甲氧基) - 乙氧基)乙氧基)-2 - ((2-(2-(2-(2-(2-(2-甲氧基乙氧基)乙氧基)乙氧基)乙氧基)乙氧基) - 甲基) - 甲基)丙烯酸苯甲酸苯二甲酸苯乙烯1,4,5,8- bis(dicarbobimide)bis(dicarbobimide)(dicarbobimide)-2 boximide)-2,6-diene-andene-andene---------------------(2,2,5,5,5,5,5,5,5,5,5,5,5,5,5,5,(2) P(ndideg-t))活性层的PCE为2.27%,高开路电压(V OC)接近0.8 V,这是迄今为止据报道的AQ-ASPC的最高值之一。
协议使用Oligo名称序列(5'→3')IVT FWD PRIMER PCR NANOPORE_IVT_T7_FORWARD_FORED_PRIMER TAATACGACTCACTATAGCGCGGGCGGCGGTTTTTTTTTTTTTTTCTGTGTGTGTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGTTGCTGTTGTTGTGCT IVT REV PIRER PIRER PRIMER PCR NANOPORE_IVTRIMERER_TRIMERERIMERERIMer Sanger Seq的ActTGCCTGTCGCTTCTTCTC PCR F PRIMER在Chr1上:23792793 Sanger_Chr1:23792793_f ccgtgtgtggtggtggtgtgtgtgtgtggt pcr r pcr r Primer for sanger seq for sanger seq in Chr1:23792793 sanger_chr1:2379327927927927992799279999279999999999999999999999999999.23999999999999999999. caggtagcagccaaacaggt pcr f primer for sanger seq for chr2:117817639 sanger_chr2:117817639_f gggaggcatgtctcatcatcaagaagca pcr r primer,用于sanger seq的sanger seq in Chr2:117817639 sanger_chr2:117817639 sanger_chr2: AAACTAAATGGCTGAAGTTCAAAGA PCR F primer for Sanger seq at Chr19:2917188 Sanger_Chr19:2917188_F ACTGTGGACGAAAAGCACCT PCR R primer for Sanger seq at Chr19:2917188 Sanger_Chr19:2917188_R sanger seq的tccgacactgctcgcattt pcr f primer在CHR3:19950940 sanger_chr3:19950940_f ggacatggctagtcgaggc pcr r启动sanger seq at ch ch chr3:19950940 sanger_chr3:19950940 sanger_chr3:199505 seq chr4:109816233 sanger_chr4:109816233_f atgtttttcgaggcgggcggggggcgggg pcr r primer primer for sanger seq for chr4:109816233 sanger_chr4:109816233 CHR1:35603333 PSMB2_PSEUDOU_F_PRIMER TGTTTGGGTACCTCTCTACCAC PCR PCR PCR F PRIMER PRIMER for SANGER SEQ在Chr1上:35603333333333 psmb2_pseudou_r_r_r_r_r_r_r_r_r_primer aggacatgatgatgatgatgatgatgttaggtaggaggagccc
应用:•浓缩器(体积小至 5µl):寡核苷酸(>17bp)、DNA、基因组 DNA(<140bk)、RNA 和微小 RNA • ChIP DNA 清理和浓缩(快速高效,仅需 10 分钟即可实现高回收率)。•从 LCM(激光捕获显微切割)样本中分离 RNA。•从唾液、血浆、血清、全血、组织样本(如鼠尾)、病毒、细菌、植物或其他来源制备纳克到毫克量的 DNA 或 RNA。•大肠杆菌转化后,直接从平板上的单个菌落(直径 >2mm)进行 DNA/RNA 纳米制备,无需培养 2ml 过夜培养物。•DNA/RNA 凝胶提取•从 PCR 产物、酶反应、标记、测序反应中清理 DNA 和 RNA•微小 RNA(小 RNA)制备和清理规格:
1995 年 5 月 - 2004 年 8 月 高级副科学家 强生公司,制药和研究开发部 加利福尼亚州圣地亚哥 参与的项目和获得的专业知识: 基因发现:差异显示、cDNA/寡核苷酸微阵列、激光捕获显微切割、RNA 扩增。 药物发现:高通量筛选化合物库以识别药物靶标。 管理职位:领导一个小组为多个研究小组进行微阵列实验。 1992 年 2 月 - 1995 年 5 月 研究技术员 细胞生物学系,斯克里普斯研究所,加州拉霍亚 参与项目: 一种来自拟南芥的新型钙调蛋白调节的 Ca2 + -ATPase(ACA2),具有 N 端自抑制结构域 1991 年 8 月 - 1992 年 2 月 研究助理 中国科学院动物研究所内分泌系,中国北京 1989 年 9 月 - 1991 年 7 月 硕士生 中国科学院遗传与发育研究所,中国北京
核酸检测在各种诊断和疾病控制中起着关键作用。目前可用的核酸检测技术面临着速度、简便性、精度和成本之间的权衡挑战。在这里,我们描述了一种用于快速核酸检测的新方法,称为 SENSOR(硫 DNA 介导的核酸传感平台)。SENSOR 由硫代磷酸酯 (PT)-DNA 和硫结合域 (SBD) 开发而成,可特异性结合双链 PT 修饰 DNA。SENSOR 利用 PT-DNA 寡核苷酸和 SBD 作为靶向模块,与分裂荧光素酶报告基因连接,在 10 分钟内产生发光信号。我们对合成核酸和 COVID-19 假病毒进行了检测测试,结合扩增程序实现了阿摩尔灵敏度。单核苷酸多态性 (SNP) 也可以区分。表明 SENSOR 是一种有前途的新型核酸检测技术。
为了访问这些优化的基因组编辑方法,我们创建了Invitrogen™Truedesign™基因组编辑器,这是一种免费的在线工具,用于设计和订购基于CRISPR-Cas9的编辑。本申请说明描述了两种用例:(1)引入诱导多能干细胞(IPSC)(IPSC)和(2)用GFP标记β-肌动蛋白的LRRK2基因(G2019S)中的SNP变化。对于SNP变化,通过在线工具自动生成了单链寡核苷核苷酸(SSODN)供体的建议设计。对于融合蛋白,使用Invitrogen™TRUETAG™供体DNA试剂盒自动生成底漆建议,以自动生成双链供体DNA。供体DNA。此应用程序说明还描述了此转染过程的详细协议。一旦输送到细胞中,供体DNA将在不到一天的时间内将其集成到目标细胞的基因组中。
摘要 近 90% 的人类致病突变是由微小的基因变异引起的,有效纠正这些错误的方法至关重要。进行微小 DNA 改变的一种方法是提供单链寡脱氧核苷酸 (ssODN),该单链寡脱氧核苷酸包含一个改变,并在基因组的目标位点处与靶向双链断裂 (DSB) 相结合。将 ssODN 供体与 CRISPR-Cas9 介导的 DSB 结合是引入微小改变的最简化方法之一。然而,在许多系统中,这种方法效率低下,并且会在基因连接处引入不精确的修复。我们在此报告一种使用 ssODN 和 CRISPR-Cas9 的时空定位来改进基因改变的技术。我们表明,通过将 ssODN 模板与反式激活 RNA (tracrRNA) 融合,我们可以恢复精确的基因改变,并且在体外和体内的整合度和精确度都有所提高。最后,我们表明该技术可用于与其他基因编辑工具(如转录激活因子如效应核酸酶)一起增强基因转换。
基于有机尾巴中具有不同刚度的不同刚性的三组聚二碱(POM)的两亲性杂交大分子用作模型,以了解分子刚性在自组装过程中可能的自我认知功能的分子刚度对其可能的自我认识的影响。在两个结构相似的球形rigid T形T形连接的寡素(TOF 4)杆的混合溶液中实现了自我识别,分别是Anderson(Anderson-TOF 4)和Dawson(Dawson-Tof 4),而亲水群是Anderson(Anderson-TOF 4)。Anderson-TOF 4被观察到自组装成洋葱样的多层结构,而Dawson-tof 4形式的多层囊泡。自组装由疏水棒的互插和带电的亲水性无机簇中的反座介导的吸引力。当疏水块不太刚性时,例如部分刚性的聚苯乙烯和完全灵活的烷基链时,未观察到自识别,这归因于疏水性分子在杂质域中的疏水构象。这项研究表明,由于溶性结构域的刚性,由于超分子结构的几何限制可以实现两亲物之间的自我识别。
是温度内存聚合物(TMP),在加热并超过开关温度T SW时能够执行预定的形状变化。t sw被先前的变形步骤中施加的温度T变形确定。[2]在分子水平上,温度记忆效应由两个结构特征实现。开关域正在固定临时形状,并通过熵弹性驱动恢复。交叉链接定义了其原始状态和恢复状态的永久形状。它们将麦克索变形传递到分子水平。对于后者,基于高熔化的微晶的物理交联特别感兴趣,因为所得的材料是可以重新处理的。用于将TMP用作植入物材料,T SW应在人体可耐受的范围内调节。降解性是一种附加功能。这种多功能材料已与基于可结晶的寡聚(ε-caprolactone)(OCL)的多块共聚物实现,这些单元与疏水和高融化和高融化[3] Oligo(ω-pentadecalactone)(optadecalactone)(Opdl)(OPDL)cegments by urthane Junitane Junitane Jun。[2]这些伴侣可以通过酯的水解降解,从而预期晶体单位的降解比无定形的降解较慢。[4,5]因此,可以推测OCL Crystallites执行形状开关的熔化可以增强降解性。因此,温度记忆和降解功能将与可编程开关温度T SW依次耦合。基于这些考虑,对加速条件下的宏观共溶性酯(PDLCL)测试标本进行了定性评估(图S8,支持信息)。的降解性确实在依赖于T变形和降解温度的情况很大。然而,在所使用的高度酸性条件下,质子的催化活性在所有酯键上可能非常相似,因此,需要较少的严格条件才能理解功能相互关系。基于OPDL片段的水解速率[6]和Poly(ε-2酚)(PCL),[7]可以预期,体内PDLCLS降解的模式是从材料中逐渐浸出OCL块。可以在langmuir单层降解实验中模拟这种效果,其中,在脂肪酶酶的前提下,只有OCL段是浸出的
