在本病例对照研究中的讨论中,我们估计了总抗氧化能力,以衡量人体针对氧化应激的防御机制,丙二醛是氧化损伤的标志,以及空腹血浆葡萄糖在非糖尿病和糖尿病患者中的标志。我们的结果表明,与非糖尿病群相比,糖尿病基团暴露于更高的氧化应激,这是由于TAC的减少和MDA的增加所示。这些发现与Najafi等人先前的研究一致。[4],Rani&Mythili [5]和Pieme等。[6],其中糖尿病患者表现出较低水平的抗氧化剂和较高水平的ROS标记物(如MDA)。Vincent等。[11]表明,DM中的慢性高血糖刺激了ROS的过量生产,ROS的生产过多,从而攻击细胞中的脂质,并导致脂质过氧化产物(如MDA)的产生和释放增加。[5,12]另外,DM中的慢性高血糖会损害人体的抗氧化剂防御机制,从而导致TAC减少。[11]结果,身体在消除ROS方面的效率降低,允许氧化应激持续存在。TAC的减少进一步加剧了脂质过氧化和MDA的积累。
摘要:NFIX是转录因子的核因子I(NFI)家族的成员,已知与肌肉和中枢神经系统胚胎发育有关。但是,其在成年人中的表达受到限制。与其他发育转录因子类似,已发现NFIX在肿瘤中发生了改变,通常会促进促肿瘤功能,例如导致增殖,分化和迁移。然而,一些研究表明NFIX也可以具有肿瘤抑制作用的作用,表明NFIX具有复杂且癌变的依赖性作用。这种复杂性可以与调节NFIX的多个过程有关,其中包括转录,转录后和翻译后过程。NFIX的其他特征,包括其与不同NFI成员形成同型二聚体或异二聚体的能力,因此允许转录不同的靶基因,以及其感知氧化应激的能力,也可以调节其功能。在这篇综述中,我们检查了NFIX调节的不同方面,首先是发育中,然后研究了癌症,强调了NFIX在氧化应激中的重要作用和肿瘤中细胞命运调节的重要作用。此外,我们提出了不同的机制,氧化应激调节NFIX转录和功能,将NFIX作为肿瘤发生的关键因素。
N6-甲基腺苷(m6A)是高等生物中最常见的修饰,研究表明m6A修饰广泛存在于哺乳动物、植物、真菌等生物体中(1),m6A修饰主要发生在DRACH序列的腺嘌呤上(2,3),高通量测序发现m6A主要分布在终止密码子、mRNA外显子、3'UTR及蛋白质编码区(4)。RNA的生物学功能依赖于多种修饰,其中甲基化占有很大比例(5,6)。m6A修饰在基因表达调控中起着基础性作用(7),同时m6A修饰还参与RNA的翻译、降解、剪接、去核和折叠等过程(5,8,9)。m6A的调控主要依赖于m6A的酶系统,包括“Writer”、“Eraser”、“Reader”。 “Writer”是一种甲基转移酶,主要包括METTL3、METTL14和WTAP,这些甲基转移酶将甲基从甲基供体S-腺苷甲硫氨酸(SAM)转移到RNA腺嘌呤的第六个N原子上。“Eraser”是一种去甲基化酶,主要包括脂肪质量与肥胖相关蛋白(FTO)和ALKBH5。FTO是第一个在m6A修饰中发现的去甲基化酶(9,10)。研究发现,用siRNA敲除FTO,mRNA中M6A含量增加,而过表达FTO则可降低细胞内m6A水平(11)。但也有学者认为FTO对m6A无明显影响,尤其是对核小RNA。相对于FTO作为去甲基化酶发挥作用的观点,有学者认为FTO和ALKBH5的调控位点为了逆转甲基化,倾向于维持非甲基化状态的稳定性(12)。在FTO被抑制或去除的情况下,异常的m6Am会干扰输出机制,可能导致mRNA的异常预剪接(13)。结合以上观点,FTO与m6A酶系统中其他蛋白的作用需要更加平衡和充分的研究。甲基化修饰要实现其生物学功能,需要与相应的识别蛋白结合,也就是“Reader”,包括YT521-B同源结构域家族(YTHDF)蛋白(14)。目前的研究更多集中在YTHDF1/2/3上,虽然这三者被认为具有不同的作用,但由于其序列的相似性和结合靶标的趋同,它们很可能具有叠加或协同作用(15)。根据目前的结果,Reader 包括 YTHDF 和 IGF2BP3 等蛋白质,
人们早已认识到,癌细胞严重依赖于重新编程的代谢模式,这种模式可以实现强劲且异常高的细胞增殖水平。由于线粒体是细胞代谢活动的枢纽,因此有理由提出,这些细胞器内的途径可以形成靶标,这些靶标可以被操纵以损害癌细胞致病的能力。然而,线粒体具有高度多功能性,并且仍在揭示各种机制互连,以便在癌症治疗中充分发挥针对线粒体的潜力。在这里,我们旨在强调调节线粒体动力学以针对癌细胞中的关键代谢或凋亡途径的潜力。线粒体裂变和融合在不同癌症环境中发挥着不同的作用。针对介导线粒体动力学的因素可能与氧化磷酸化受损直接相关,氧化磷酸化对于维持癌细胞生长至关重要,也可以改变对化疗化合物的敏感性。这一领域仍然缺乏统一的模型,但进一步的研究将更全面地绘制潜在的分子机制,以便根据这些途径制定更合理的治疗策略。
大学西班牙纳瓦拉大学的德国拜罗斯4; sanmartin@unv.sunab.sunalog。 CB16/12/00489,28029马德里。西班牙 * Corrander * unv.s(D.P.); mmazoveg@unav.s(M.M.);电话。: +34-9); +34-94825400(M.M.)<)
1显微镜核心设施,Max Planck感染生物学研究所,CharitePlatz 1,10117柏林,德国; 2Charité - 柏林大学柏林大学成员,柏林弗里伊大学和洪堡乌纳弗蒂蒂特·祖林,柏林,ALS和其他运动神经元疾病中心,德国柏林13353; 3 Max Planck感染生物学研究所,柏林10117,德国#通讯作者摘要中性粒细胞是专门生产大量活性氧(ROS)以杀死微生物的人。然而,这些细胞调节不同ROS物质并减轻氧化应激的机制尚不清楚。在这里,我们证明了超氧化物歧化酶1(SOD1)在中性粒细胞中的ROS形成和抗菌活性中起着至关重要的作用。我们的发现表明,SOD1在ROS爆发过程中调节了超氧化物(O 2-)与过氧化氢(H 2 O 2)的比率,从而支持髓过氧化物酶(MPO)酶促活性。通过采用生化,细胞生物学和遗传方法,我们表明SOD1对于Netosis和微生物感染过程中的ROS形成至关重要,因为它可以减少氧化应激,并启用完全嗜中性粒细胞激活。SOD1活性的损害会增加半胱氨酸的氧化和脂质过氧化。 从患有SOD1突变的患者中分离出的中性粒细胞降低了ROS的产生,中性粒细胞外陷阱(NET)形成受损。 我们的发现表明SOD1是氧化爆发中的新调节因素,可以使中性粒细胞的全部免疫学反应。 简介SOD1活性的损害会增加半胱氨酸的氧化和脂质过氧化。从患有SOD1突变的患者中分离出的中性粒细胞降低了ROS的产生,中性粒细胞外陷阱(NET)形成受损。我们的发现表明SOD1是氧化爆发中的新调节因素,可以使中性粒细胞的全部免疫学反应。简介
活性氧和氮物质 (RONS) 的积累会导致细胞损伤甚至细胞死亡。RONS 是短寿命物质,因此难以直接、精确和实时测量。生物相关的 RONS 水平在 nM-µM 范围内;因此,需要高灵敏度的 RONS 探针。我们之前使用了对 H 2 O 2 灵敏度为 mM 的混合金核银壳纳米粒子。这些粒子通过光谱偏移报告了 RONS 的存在,而光谱偏移可以通过光声成像轻松量化。在这里,我们使用卤化物掺杂来调整这些材料的电化学性质,以更好地匹配 RONS 的氧化电位。这项工作描述了这些 AgI 涂层金纳米棒 (AgI/AuNR) 的合成、表征和应用。I:Ag 摩尔比、pH 值和初始 Ag 壳厚度都经过优化,以获得良好的 RONS 检测限。卤化物掺杂使银的还原电位从 E 0 Ag = 0.80 V 降低至 E 0 AgI = − 0.15 V,导致 H 2 O 2 增加 1000 倍,ONOO − 灵敏度增加 100,000 倍。AgI/AuNR 系统的蚀刻速度也比未掺杂的 Ag/AuNR 快 45 倍。AgI/AuNR 可轻松报告已建立细胞系以及小鼠模型中内源性产生的 RONS。
活性氧和氮物质 (RONS) 的积累会导致细胞损伤甚至细胞死亡。RONS 是短寿命物质,因此难以直接、精确和实时测量。生物相关的 RONS 水平在 nM-µM 范围内;因此,需要高灵敏度的 RONS 探针。我们之前使用了对 H 2 O 2 灵敏度为 mM 的混合金核银壳纳米粒子。这些粒子通过光谱偏移报告了 RONS 的存在,而光谱偏移可以通过光声成像轻松量化。在这里,我们使用卤化物掺杂来调整这些材料的电化学性质,以更好地匹配 RONS 的氧化电位。这项工作描述了这些 AgI 涂层金纳米棒 (AgI/AuNR) 的合成、表征和应用。I:Ag 摩尔比、pH 值和初始 Ag 壳厚度都经过优化,以获得良好的 RONS 检测限。卤化物掺杂使银的还原电位从 E 0 Ag = 0.80 V 降低至 E 0 AgI = − 0.15 V,导致 H 2 O 2 增加 1000 倍,ONOO − 灵敏度增加 100,000 倍。AgI/AuNR 系统的蚀刻速度也比未掺杂的 Ag/AuNR 快 45 倍。AgI/AuNR 可轻松报告已建立细胞系以及小鼠模型中内源性产生的 RONS。
重复使用本文是根据创意共享属性 - 非商业 - 诺迪维斯(CC BY-NC-ND)许可证的条款分发的。此许可只允许您下载此工作并与他人共享,只要您归功于作者,但是您不能以任何方式更改文章或商业使用。此处的更多信息和许可证的完整条款:https://creativecommons.org/licenses/