引言 低温共烧陶瓷 (LTCC) 用于高频应用、集成冷却系统和嵌入式无源元件 [1-3],以及通过集成整体系统部件来提高系统密度 [2, 4]。LTCC 还被用于制造双面电力电子模块的中介层 [5-9]。双面模块具有互感最小化、双面冷却能力和更高功率密度等优点。然而,它们的设计和制造也存在一些挑战。考虑到功率模块的合理厚度,功率模块顶层和底层之间的绝缘是设计阶段必须首先仔细考虑的关键设计问题之一。另一个挑战是整个功率模块的机械支撑。在没有底板的双面功率模块中,直接键合铜 (DBC) 基板和冷却附件的整个重量可能会直接施加在半导体裸片上。这会给功率半导体芯片及其电气互连带来巨大的应力和应变,最终可能导致功率模块故障。印刷电路板 (PCB) 被用作中介层 [10],但 PCB 和功率芯片之间的热膨胀系数 (CTE) 失配远高于陶瓷基材料。LTCC 的 CTE (̴ ~4.4 ppm/°C) 非常接近碳化硅器件的 CTE (4.0 ppm/°C)。因此,这提高了模块的可靠性 [7]。此外,LTCC 结构内的嵌入通孔和电气互连使 LTCC 成为功率模块应用的多功能中介层。
对实时低功耗传感信息处理能力的需求日益增长。然而,这需要开发和集成从传感器到处理器等不同类型的智能设备。传统的三维 (3D) 异构集成技术基于冯·诺依曼架构,依靠金属线通孔垂直连接传感器、处理器和存储器层 1 。在这样的系统中,这些不同功能层之间的硬连线连接一旦制造出来就固定了。因此,传统的 3D 异构集成技术在边缘智能应用中使用时效率低下,因为在边缘智能应用中,对传感和计算的需求随时间而变。华强吴、林鹏、Jeehwan Kim 和同事在《自然电子学》上撰文,报道了一种可重构异构集成技术,该技术基于可堆叠芯片,芯片中嵌入了光电器件阵列和忆阻横杆 2 。智能传感器和处理器之前已被开发用于图像预处理 3 – 5 和并行识别 6、7 。以前也曾探索过垂直架构的神经形态视觉芯片的概念,即通过线连接将基于范德华异质结构的神经形态传感器和忆阻交叉阵列联网 8 。来自美国、韩国和中国不同研究所的研究人员采用了不同的方法,创造了类似乐高的芯片,允许各种神经形态传感器和处理器通过芯片间光通信连接起来(图 1 )。在这种 3D 集成技术中,各个芯片是可更换和可堆叠的,光电二极管/发光二极管 (LED) 阵列嵌入在各个独立的芯片层中,以提供相邻层之间的光通信。此外,忆阻交叉阵列可以植入
摘要 为了开发可靠的高速封装,倒装芯片工艺中使用的底部填充材料的特性分析变得越来越重要。底部填充材料通常是一种环氧树脂基材料,可为封装上的集成电路 (IC) 提供热和结构优势。由于如此多的输入和输出 (IO) 彼此靠近,封装上的集成电路可能会出现意外的信号和电源完整性问题。此外,芯片封装只能支持最高频率的信号,在此频率下噪声耦合(例如串扰、开关噪声等)会导致系统故障。垂直互连(例如通孔和焊料凸块)是噪声耦合的主要来源。在每个信号网络之间插入接地参考是不切实际的。对于焊料凸块,噪声耦合取决于底部填充材料的介电常数。因此,表征底部填充材料的介电常数有助于预测信号和电源完整性问题。这种液体或半粘性材料通常通过浸入材料中的开端同轴探针的简单边缘电容模型来表征。但是,开口同轴方法不如基于谐振器的方法准确。需要一种方法来准确提取高频下液体或半粘性材料的介电常数。所提出的方法使用实壁腔体谐振器,其中谐振器用底部填充材料填充并固化。介电特性分析是一个复杂的过程,其中必须了解或准确测量腔体的物理特性。这包括导体的电导率、导体的粗糙度、腔体的尺寸和端口引脚位置。本文讨论了在使用腔体谐振器表征介电体时遇到的一些挑战。这种表征方法也可用于表征其他感兴趣的材料。关键词介电体、倒装芯片、介电常数、谐振器、底部填充。
摘要本文提出了新开发的先进的超薄光敏电介电膜(PDM),其高分辨率,低CTE和低剩余应力,用于下一代高密度重新分布层(RDL),2.5D Interposer,以及高密度的风扇输出包装应用程序。对于高密度RDL,光敏电介质材料需要具有低CTE才能达到高包装可靠性。材料的CTE为30-35ppm /k。在保持低CTE时,我们成功地证明了5UM厚度中3UM的最小微型视野直径。PDM的固化温度为180 0 C x 60分钟。比目前在行业中使用的大多数高级介电材料低。低温固化过程会导致低压力。,我们通过4英寸晶圆的经经测量测量结果计算了固化的PDM中的残余应力。作为PDM材料在固化过程中的另一个好处,可以将PDM固化在空气烤箱中。大多数先进的照片介电材料都需要在N2烤箱中固化,这是由于防止材料氧化的。我们通过使用半添加过程(SAP)和溅射的Ti/Cu种子层展示了2UM线的铜痕迹,并在PDM上间隔。由于由于低温固化而引起的低CTE和低残余应力,它通过了温度周期测试(1,000个周期),其雏菊链结构在结构中具有400个VIA。可以得出结论,新开发的PDM是一种有前途的介电材料,用于2.5D interposers和Fan-Out Wafer级级别的应用程序,用于高度可靠的高密度重新分布层(RDL)。
违反摩尔法律计算绩效的限制正在努力跟上不懈的驱动力,以实现高性能芯片,因为性能瓶颈已经出现了,扩展范围在所有方面都达到了极限。扩展摩尔定律的一种方法是通过异质整合,这可以随着性能水平的提高铺平到未来设备的道路。随着芯片的变小,越来越强大,连接不断增长的晶体管数量的电线变得越来越薄且包装更密集。产生的阻力增加和过热会导致信号延迟,并限制中央处理单元(CPU)时钟速度。其他问题包括大规模集成电路(LSI)操作中的频率限制,与电池相关的电源限制和冷却问题。在改善移动计算和图形处理系统中的性能时,一个考虑因素是确保工作频率和功耗均未增加。另一个考虑因素是,通过功耗效率改善内存访问带宽,因此必须具有广泛的输入/输出(I/O)内存总线而不是高频接口。此外,随着系统性能的改善,此类系统中的内存能力变得越来越重要。3D芯片技术有助于解决几个问题,这些问题挑战了芯片的性能提高和加工尺寸的减少。这种方法通过称为晶圆键的过程在另一个芯片或集成电路(IC)上层。TSV还可以实现更有效的散热并提高功率效率。与此使用透过的硅VIA(TSV)制造方法垂直堆叠多个芯片组件,从而产生更快,更小和更低的CPU。
摘要糖尿病是一种不可推广的慢性疾病,最重要的是,血清血糖的升高表现出来,其治疗方法包括生活方式的改变以及药理学疗法。从这个角度来看,互补的综合治疗已被评估为血糖控制中的互补策略,强调了Momordica Charantia的降血糖作用。也就是说,本研究旨在确定与低血糖症和全身代谢调节有关的Momordica Charantia的影响,作为糖尿病辅助治疗的辅助疗法。审查是在使用DECS的PubMed,Medline和Scienceirect数据库中进行的:“ Momordica Charania”和“糖尿病Mellitus”,由布尔操作员“和”相互联系,并导致25篇文章进行分析。这些作品是通过各种机制来指出关于莫莫迪卡·尚蒂亚(Momordica Chantia)降血糖作用的令人满意的结果,例如刺激使用葡萄糖的使用,激活GLP-1,抑制与糖原性道路所涉及的酶,抑制肠道摄取的酶,并改善胰岛素敏感性和胰岛素敏感性和降低胰岛素的累积累积。超出其效果
通过 Bosch 工艺在硅中蚀刻高深宽比结构对于微机电系统 (MEMS) 和硅通孔 (TSV) 制造等现代技术至关重要。由于蚀刻时间长,该工艺对掩模选择性的要求非常高,并且事实证明 Al 2 O 3 硬掩模在这方面非常合适,因为与传统的 SiO 2 或抗蚀剂掩模相比,它提供了高得多的选择性。在这项工作中,我们结合使用扫描电子显微镜 (SEM)、光谱椭圆偏振仪 (SE) 和 X 射线光电子能谱 (XPS) 深度剖析来仔细研究 Al 2 O 3 掩模蚀刻机理,从而探究超高选择性的来源。我们证明,通过增加钝化步骤时间,在 Al 2 O 3 上会形成更厚的氟碳聚合物层,然后以微小的平均蚀刻速率 ~0.01 nm/min 去除 Al 2 O 3。 XPS 深度剖析显示,在采用 Bosch 工艺进行深反应离子蚀刻 (DRIE) 的过程中,聚合物和 Al 2 O 3 之间会形成一层 AlF x 层。由于 AlF x 不挥发,因此需要溅射才能去除。如果聚合物层足够厚,可以衰减进入的离子,使其能量不足以导致 AlF x 解吸(例如当使用较长的钝化时间时),则掩模不会被侵蚀。通过研究不同次数 DRIE 循环后的表面,我们还获得了有关 AlF x 的形成速率以及 DRIE 工艺过程中 Al 2 O 3 和聚合物厚度变化的信息。这些发现进一步扩展了对 DRIE 的认识,并可帮助工艺工程师相应地调整工艺。
目的:报告一个银屑病关节炎的病例,该病例在使用七年后的肿瘤坏死药物(抗TNF),adalimmmibe和后来的Etanercepte中随着结节病的发展。病例详细信息:64岁 - 女性患者,银屑病关节炎的诊断,使用adalimmab两年了,在治疗失败后,Etanercepte进行了五年使用的Etanercepte。呈现了复发性的多重性和持续性疲劳。体格检查,左踝关节炎,营养不良和指甲位点。没有明显的淋巴结和活性牛皮癣的病变。腹部断层扫描显示腹膜后淋巴结和序列,通过剖腹手术选择活检。组织病理学发现是非囊性上皮细胞肉芽肿,免疫组织化学表现出与肉芽肿性慢性淋巴结炎的一致发现,表明结节病。最终考虑:抗TNF用于治疗结节病,但是据信,这些药物并未抑制所有迹象,从而导致“排气”路线,在某些情况下会导致这些药物继发的结节病。尽管患者没有呼吸道症状和肉芽肿性皮肤病变,但我们应该意识到抗TNF诱发的结节病的可能性。
