Loading...
机构名称:
¥ 1.0

对实时低功耗传感信息处理能力的需求日益增长。然而,这需要开发和集成从传感器到处理器等不同类型的智能设备。传统的三维 (3D) 异构集成技术基于冯·诺依曼架构,依靠金属线通孔垂直连接传感器、处理器和存储器层 1 。在这样的系统中,这些不同功能层之间的硬连线连接一旦制造出来就固定了。因此,传统的 3D 异构集成技术在边缘智能应用中使用时效率低下,因为在边缘智能应用中,对传感和计算的需求随时间而变。华强吴、林鹏、Jeehwan Kim 和同事在《自然电子学》上撰文,报道了一种可重构异构集成技术,该技术基于可堆叠芯片,芯片中嵌入了光电器件阵列和忆阻横杆 2 。智能传感器和处理器之前已被开发用于图像预处理 3 – 5 和并行识别 6、7 。以前也曾探索过垂直架构的神经形态视觉芯片的概念,即通过线连接将基于范德华异质结构的神经形态传感器和忆阻交叉阵列联网 8 。来自美国、韩国和中国不同研究所的研究人员采用了不同的方法,创造了类似乐高的芯片,允许各种神经形态传感器和处理器通过芯片间光通信连接起来(图 1 )。在这种 3D 集成技术中,各个芯片是可更换和可堆叠的,光电二极管/发光二极管 (LED) 阵列嵌入在各个独立的芯片层中,以提供相邻层之间的光通信。此外,忆阻交叉阵列可以植入

类似乐高的可重构人工智能芯片

类似乐高的可重构人工智能芯片PDF文件第1页

类似乐高的可重构人工智能芯片PDF文件第2页