摘要:尽管有有关心脏病的不同遗传,表观遗传和分子特征的广泛信息,但先天性心脏缺陷的起源仍然未知。大多数遗传学和分子研究是在胚胎心脏进行性解剖学和组织学变化的背景下进行的,这是对先天性心脏病起源有限了解的原因之一。我们整合了有关人类胚胎的描述性研究的发现,以及对雏鸡,大鼠和小鼠胚胎的实验研究。这项研究基于心脏发展的新动态概念和两个心脏场的存在。第一个场地对应于直式心管,从第二个心脏场中的中胚层细胞逐渐募集到其中。总体目的是为心脏和大动脉的先天性缺陷的分析,诊断和区域化分类创造新的愿景。除了强调遗传因素在先天性心脏病的发展中的重要性外,本研究还提供了有关直心管的组成,扭曲和折叠的过程以及右心室的发展的命运的新见解。基于体内标记和细胞跟踪的新视力,并通过诸如胃类和器官等模型增强,这有助于更好地理解心脏形态发生的重要误差,这可能导致几种先天性心脏病。
众所周知的短语“您可以从石头上获取血”用于描述一项任务,无论施加了多少力量或努力,几乎都是不可能的。这句话非常适合人类对火星的第一个船员任务,这可能是有史以来最困难和技术上具有挑战性的人类努力。与向火星表面交付有效载荷相关的高成本和显着的时间延迟意味着对原位资源的剥削(包括无机岩石和尘埃(Regolith),水沉积和大气气体)将是机组人员对红色星球的任何船员任务的重要组成部分。然而,通过定义的任何船员任务也可以使用一种重要的,但长期被忽视的自然资源来源,这些资源也将被定义:船员本身。在这项工作中,我们探索了人血清白蛋白(HSA)的使用(HSA)(一种从血浆获得的常见蛋白质)作为模拟月球和火星岩石的粘合剂,以生产所谓的“外星Regolith Biocomposites(ERB)”。 '本质上,可以在体内生产的宇航员生产的HSA可以半连续地提取,并与月球或火星岩层结合使用,以“从血液中获取石头”,以重塑谚语。采用简单的制造策略,产生了基于HSA的ERB,并显示出高达25.0 MPa的抗压强度。进行比较,标准混凝土通常具有20至32 MPa之间的抗压强度。此外,我们证明了HSA-ERB具有3D打印的潜力,为使用人类衍生的原料开辟了一个有趣的潜在潜在途径,以实现外星的建设。在某些情况下,尿素的掺入可以从尿液,汗水或眼泪中提取 - 在某些情况下可以将抗压强度进一步提高300%以上,其表现最佳的配方的平均抗压强度为39.7 MPa。研究了粘附的机制,并归因于脱水引起的蛋白质二级结构重组为密集的氢键,超分子β-链网络 - 类似于蜘蛛丝的凝聚力机制。进行比较,还研究了合成的蜘蛛丝和牛血清白蛋白(BSA)为Regolith Binders,也可以在火星菌落上生产具有生物制造技术未来进步的火星殖民地。
囊性纤维化 (CF) 是由 CF 跨膜传导调节器 (CFTR) 基因突变引起的。我们试图通过系统性递送肽核酸基因编辑技术(由生物相容性聚合物纳米颗粒介导)来纠正 F508del CF 致病突变引起的多器官功能障碍。我们在气液界面生长的 F508del 小鼠的原代鼻上皮细胞中证实了体外表型和基因型修饰,并在静脉内递送后在 F508del 小鼠体内证实了表型和基因型修饰。体内治疗导致上皮细胞中 CFTR 功能部分增强(通过原位电位差和 Ussing 室测定测量)以及气道和胃肠道组织中的 CFTR 得到纠正,并且没有高于背景的脱靶效应。我们的研究表明系统性基因编辑是可能的,更具体地说,静脉内递送旨在纠正 CF 致病突变的 PNA NP 是改善多个受影响器官中 CF 的可行选择。
摘要:抗体-药物偶联物 (ADC) 是一种快速兴起的治疗平台。抗体和药物有效载荷之间的化学接头在这些药物的功效和耐受性中起着至关重要的作用。定量评估复杂组织环境中的裂解效率的新方法可以为 ADC 设计过程提供有价值的见解。在这里,我们报告了一种近红外 (NIR) 光学成像方法的开发,该方法可以测量小鼠模型中接头裂解的位置和程度。这种方法是由我们最近设计的花青氨基甲酸酯 (CyBam) 平台的优越变体实现的。我们发现了一种新型的含叔胺的去青花青,这是 CyBam 裂解的产物,由于细胞通透性和溶酶体积累的改善,其细胞信号显著增加。由此产生的花青溶酶体靶向氨基甲酸酯 (CyLBams) 在细胞中的亮度约为 50 倍,我们发现这种策略对于高对比度体内靶向成像至关重要。最后,我们在两种抗体和肿瘤模型中比较了几种常见的 ADC 接头。这些研究表明,蛋白酶可裂解接头比受阻或不受阻的二硫键具有更高的肿瘤活化作用 - 这一观察结果只有在体内成像中才能明显看出。该策略可以定量比较复杂组织环境中的可裂解接头化学性质,对整个药物递送领域都有影响。
CRISPR-Cas9 可以扩大规模,用于培养细胞的大规模筛选,但动物的 CRISPR 筛选一直具有挑战性,因为生成、验证和跟踪大量突变动物的成本过高。在这里,我们介绍了多重混合 CRISPR 液滴 (MIC-Drop),这是一个结合液滴微流体、单针大规模 CRISPR 核糖核蛋白注射和 DNA 条形码的平台,可用于对斑马鱼进行大规模功能性基因筛选。该平台可以有效识别负责形态或行为表型的基因。在一个应用中,我们展示了 MIC-Drop 可以识别小分子靶标。此外,在对 188 个特征不明显的基因进行的 MIC-Drop 筛选中,我们发现了几个对心脏发育和功能很重要的基因。MIC-Drop 具有扩展到数千个基因的潜力,可在模型生物中进行基因组规模的反向遗传筛选。H
位置脑移位(PBS),在重力作用下大脑的下垂,与立体定向干预成功的误差缘(约1 mm)相当。由于头部方向的轻微差异而引起的这种不均匀的转移可能会导致计划的手术靶标和实际位置之间的显着差异。该复杂变形的准确体内测量对于设计和验证适当的补偿以整合到神经化系统中至关重要。PBS是由易于易于盐的头取向引起的,用11名年轻人的磁共振成像测量了头部方向。通过数字体积相关在体素基础上提取全局部位移,并在标准参考空间中进行分析。结果表明,在手术相关的结构上测量了范围从0.52 mm到0.77 mm的显着位移,需要对手术目标进行特定目标校正。应变分析进一步揭示了可压缩性的局部变异性:前区域显示出膨胀(体积和形状变化),而后区域显示出较小的压缩,主要由形状变化主导。最后,对相关性的分析证明了进一步的患者和干预特异性调整的潜力,因为颅内宽度和头部倾斜与达到统计学意义的PBS相关。
摘要:CRISPR 相关蛋白(如 Cas9)的开发提高了基因组编辑的可及性和易用性。然而,需要额外的工具来量化和识别活体动物中成功的基因组编辑事件。我们开发了一种快速量化和监测活体动物中基因编辑活动的方法,该方法还有助于共聚焦显微镜和核苷酸水平分析。在这里,我们报告了一种新的 CRISPR“指纹识别”方法,用于激活小鼠中的荧光素酶和荧光蛋白作为基因编辑的功能。该系统基于我们之前的 cre 重组酶 (cre) 检测系统的经验,专为能够靶向 lox P 的 Cas 编辑器而设计,包括 SaCas9 和 ErCas12a 的 gRNA。这些 CRISPR 专门在 lox P 内切割,这种方法不同于以前靶向相邻终止序列的体内基因编辑活动检测技术。在这种传感器范例中,在肌肉或静脉内流体动力质粒注射后,在活体 cre 报告小鼠(FVB.129S6(B6)-Gt(ROSA)26Sortm1(Luc)Kael/J 和 Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J,本文中将称为 LSL-luciferase 和 mT/mG)中非侵入性地监测 CRISPR 活性,证明了其在两种不同器官系统中的实用性。通过共聚焦显微镜在特定组织的细胞水平上检查了相同的基因组编辑事件,以确定成功基因组编辑细胞的身份和频率。此外,SaCas9 诱导的靶向编辑效率与 cre 相当,证明了在整个动物中具有高效的传递和活性。这项研究建立了基因组编辑工具和模型,以非侵入性方式追踪体内 CRISPR 编辑并识别目标细胞。这种方法还使之前生成的数千种 lox P 动物模型中的任何一种都具有类似的实用性。
3尽管危机和危机后的时期在经济,社会和领土影响方面取决于空间环境,从经济角度来看,西班牙的危机时期发生在2008年至2012年2013年10月2014年。在这三年中,该国见证了经济复苏的缓慢(如宏观经济数据所示,例如GDP,人均GDP和就业增长)。然而,重要的挑战仍有待解决,例如降低风险保费,公共债务和社会空间不平等(由临时工作的数量,高失业水平和相当大的驱逐率证明)。4,10,000名居民的门槛用于区分农村和城市城市。
目前的 Cas9 试剂可以高度特异性地靶向基因组位点。然而,当用于敲入时,靶向结果本质上是不精确的,通常会导致非预期的敲除而不是预期的编辑。这将基因组编辑的应用限制在离体方法中,其中可能进行克隆选择。在这里,我们描述了一种使用迭代高通量体外和高产量体内测定的工作流程,以评估和比较 CRISPR 敲入试剂在编辑效率和精度方面的性能。我们测试了 Cas9 和 DNA 供体模板变体的组合,并确定 Cas9-CtIP 与原位线性化供体在细胞系和小鼠脑体内显示出成倍的编辑精度增加。通过迭代此过程,我们生成了新的化合物融合,包括 eRad18-Cas9-CtIP,其性能进一步成倍增加。继续利用该平台开发精确编辑试剂有望在模型生物中直接进行体内敲入,并有望用于未来的靶向基因疗法。
识别 miRNA 靶基因很困难,而确定哪些靶标在生物学上最重要则更加困难。我们设计了一种新策略,通过 CRISPR - Cas9 基因组编辑破坏秀丽隐杆线虫中每个预测的 miRNA 结合位点,来测试单个 microRNA - 靶标相互作用对表型的影响。我们开发了一种多重负选择筛选方法,其中对编辑的位点进行深度测序,并根据对破坏 miRNA 结合的突变的明显选择压力对候选位点进行优先排序。重要的是,我们的筛选是在突变动物体内进行的,这使我们能够研究生物体水平的表型。我们使用这种方法筛选了必需的 mir-35-42 家族的表型靶标。通过在所有预测靶标中生成 1130 个新的 3′UTR 等位基因,我们将 egl-1 确定为表型靶标,其去抑制部分表型复制了 mir-35-42 突变体表型,诱导了胚胎致死和低繁殖力。这些表型可以通过补偿性 CRISPR 突变来挽救,这些突变将 mir-35 重新定位到突变的 egl-1 3′UTR。这项研究表明,体内全生物体 CRISPR 筛选的应用具有加速发现非编码基因组中表型负调控元件的巨大潜力。