关键词:光刻热点、GaAs 蚀刻、SiN 沉积、工艺集成 摘要 光刻技术能否持续对精细几何图形进行图案化,主要挑战之一是整个晶圆和加工场内的最佳焦点存在差异。晶圆图案化侧的这些差异通常是可以理解的,可以很好地表征,并且在选择和优化焦点设置时可以进行校正。然而,晶圆背面的意外和变化的畸形会影响曝光过程中的场平衡(由于基板高度差异而导致的焦点偏移)。这会导致存在污染的地方图案分辨率较差。这些缺陷通常被称为“热点”。在本研究中,研究并表征了一种具有可重复双重像差的故障模式。结果表明,由于一种由 Si x N y 沉积和 GaAs 湿法蚀刻组成的新型集成缺陷模式,形成了意想不到的背面台面。然后,这些台面在金属互连光刻过程中产生热点,导致产量损失 1% 或更多。本研究证明了检测、表征和最小化图案化畸变对于持续改进器件、提高产量和降低化合物半导体制造成本的重要性。引言光刻是半导体行业中不可或缺的技术,是蚀刻、沉积和离子注入的前身[1-4]。保持正确且一致的聚焦和剂量控制对于确保侧壁角度和特征尺寸以满足器件功能和可靠性需求至关重要[2]。因此,先进的光刻技术对于实现器件性能和提高半导体行业的芯片产量至关重要[5]。使用浸没式光刻、双重或多重图案化、分辨率增强技术等创新方法,可以在阿贝衍射极限的几分之一处对器件特征进行图案化[1,6-8]。除了实现更密集的图案化和更小的特征尺寸外,稳健的光刻部署还面临着许多实际挑战[5,9-11]。其中一个挑战是
摘要 逻辑、存储器、光子、模拟和其他增值功能的异构集成是提高电子系统效率、性能和带宽同时有助于降低总体制造成本的一种方法。为充分利用异构集成的优势,设计人员需要更精细分辨率的重分布层图案和更大的封装尺寸,以最大限度地提高系统级封装集成的可能性。大封装电子系统的生产非常适合面板级封装 (PLP),而在整个矩形面板上实现均匀的亚微米图案化是一项关键的光刻挑战。为应对这一挑战,佳能开发出第一台能够在 500 毫米面板上实现亚微米分辨率的光刻曝光系统或步进机。步进机具有面板处理系统,可处理最大尺寸为 515 mm x 515 mm 的面板,还配备了宽视场投影镜头,其最大数值孔径为 0.24,像场为 52 mm x 68 mm。本文将报告使用面板步进机的亚微米 PLP 工艺的评估结果,并介绍高分辨率 PLP 工艺的挑战,包括翘曲面板处理。将报告覆铜板 (CCL) 基板的工艺结果,包括图案均匀性、相邻镜头拼接精度和包含扇出工艺中常见的芯片放置误差的基板上的叠加精度。关键词先进封装、扇出、面板级封装、步进机、亚微米、光刻、系统级封装
红外 (IR) 发射稀土掺杂材料已广泛用于制造光纤放大器、电信、光电子和波导等各个领域的集成光学设备的有源元件。在各种稀土元素中,三价铒离子 (Er 3+) 备受关注,因为它们的发射行为跨越了 1300–1650 nm 的低损耗电信窗口。在本文中,我们报告了两种类型的聚合物波导放大器。8 cm 长、光刻图案化的螺旋波导使用 95 mW 的 980 nm 泵浦功率提供 8 dB 的增益。增益在 1530 至 1590 nm 之间观察到。我们还报告了使用基于双光子光刻的 3D 打印方法制造的聚合物波导放大器的首次演示,为快速制作有源 3D 打印设备和可能超越平面限制的有源光子设备奠定了基础。
由AygenSavaşAlkan提交,部分履行了中东技术大学化学工程学硕士学位的要求,由HalilKalıpçılar博士教授,Pretied and Applied Sciences研究生院,PınarCiseciences研究生院PınarCharissScience教授,PınarCasalık博士。Zeynep博士Zulfaz博士EMECEN主管,化学工程,METU检查委员会成员:LeventYılmazChemical Engineering教授,Metu Assoc。 Zeynep博士ÇulfazEmecen Chemical Engineering,Metu教授BirgülTantekinErsolmaz Chemical Engineering,伊特·艾协会。 METU助理Erhan Bat Chemical Engineering博士。 EmreBüküşoğlu博士,MetuZeynep博士Zulfaz博士EMECEN主管,化学工程,METU检查委员会成员:LeventYılmazChemical Engineering教授,Metu Assoc。Zeynep博士ÇulfazEmecen Chemical Engineering,Metu教授BirgülTantekinErsolmaz Chemical Engineering,伊特·艾协会。 METU助理Erhan Bat Chemical Engineering博士。 EmreBüküşoğlu博士,MetuZeynep博士ÇulfazEmecen Chemical Engineering,Metu教授BirgülTantekinErsolmaz Chemical Engineering,伊特·艾协会。METU助理Erhan Bat Chemical Engineering博士。 EmreBüküşoğlu博士,MetuMETU助理Erhan Bat Chemical Engineering博士。EmreBüküşoğlu博士,MetuEmreBüküşoğlu博士,Metu
提出并演示了一种通过微透镜阵列 (MLA) 的光场投影进行 3D 光刻的方法。利用 MLA,我们可以通过开发的聚焦方案将来自空间光调制器 (SLM) 的光传送到 3D 空间中的任意位置,即体素。体素位置和 SLM 像素位置之间的映射函数可以通过光线追踪一一确定。基于正确的映射函数,可以通过 SLM 和 MLA 在 3D 空间中重建计算机设计的 3D 虚拟物体。然后可以对投影的 3D 虚拟物体进行光学压缩并将其传送到光刻胶层进行 3D 光刻。利用适当的近紫外光,可以在光刻胶层内的不同深度构建 3D 微结构。这种 3D 光刻方法可用于在任意位置进行高速 3D 图案化。我们预计,在提出的光场 3D 投影/光刻方案中采用飞秒光源和相关的多光子固化工艺时,也可以实现高精度 3D 图案化。多光子聚合可以防止在到达设计的焦点体素之前沿光路对区域进行非自愿图案化,如我们在单光子演示中所观察到的那样。
分析科学 J-STAGE 预发表论文 2020 年 1 月 17 日收到;2020 年 4 月 7 日接受;2020 年 4 月 17 日在线发表 DOI:10.2116/analsci.20N002
摘要。下一代极端紫外线(EUV)系统具有0.55的数值,具有提供低于8 nm的半程分辨率的潜力。在较小的特征尺寸下,随机效应的重要性增加了扫描仪和掩模以提供高对比度图像的进一步需求。我们使用严格的面膜衍射和成像模拟来了解EUV掩模吸收器的影响,并确定用于高NA EUV成像的最合适的光学参数。对各种用例和材料选项的仿真表示两种主要解决方案类型:高灭绝材料,尤其是针对线条空间,以及可以提供相移遮罩溶液的低折射率材料。euv相掩码的行为与DUV的相移面膜大不相同。精心设计的低折射率材料和口罩可以为高对比度的边缘打开新的道路。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或重新分配或重新分配本工作,需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jmm.m.19.4.041001]
半导体光刻设备行业已经发展到仅凭技术知识不足以在市场上生存的地步。要充分了解光刻行业的动态,必须具备一套跨学科的技能。了解基础技术、制造设备市场的管理问题以及行业赞助的联盟的作用对光刻行业都至关重要。20 世纪 80 年代中期,半导体光刻设备市场发生了巨大转变,引发了美国政界的愤怒。从 20 世纪 70 年代末到 80 年代末,美国公司的市场份额从近 90% 下降到不到 20%。半导体市场的快速扩张,尤其是在日本,再加上美国光刻供应商对客户要求的明显反应迟钝,为尼康和佳能提供了机会之窗。此外,制造光刻设备所需的技术专长日益迫使全球半导体制造商从供应商处购买设备,而不是内部开发。在 20 世纪 90 年代,美国半导体制造商已经适应了光刻设备采购的新市场条件。光刻技术对半导体制造过程仍然至关重要。由于只能从供应商处购买光刻设备,制造商被迫制定有效的技术供应链管理策略。在技术开发周期的推动下,半导体公司有四年的时间来学习和不断改进其采购策略。由于依赖供应商,半导体公司的设备采购策略已调整为最大限度地提高供应商转换灵活性,同时最大限度地减少资本支出。这种方法促使许多制造商建立首选供应商关系和工具,以确保供应商之间的竞争行为。行业目标:确保尖端光刻技术的持续发展。本报告对各公司如何组织其设备开发和采购实践及其各自的优点进行了基准测试。
1) 新加坡南洋理工大学电气与电子工程学院,50 Nanyang Avenue 639798,新加坡。2) 韩国机械材料研究所纳米融合机械研究部,韩国大田儒城区 34103,韩国。3) 德克萨斯大学阿灵顿分校电气工程系,德克萨斯州阿灵顿 76019,美国。4) 伊利诺伊大学厄巴纳-香槟分校电气与计算机工程系和 Holonyak 微纳米技术实验室,伊利诺伊州厄巴纳 61801,美国 关键词。金属辅助化学蚀刻;多孔 Ge;抗反射;