摘要我们引入了独特的软标志操作,该操作利用了邮票屋顶塌陷引起的间隙,以选择性地去除AU上的烷烃 - 硫醇自组装单层(SAM),以生成表面图案,这些表面图案比原始弹性邮票上的结构小。使用化学升降光刻(CLL)过程中的千分尺尺度结构邮票实现的最小特征维度为5 nm。分子图案保留在邮票特征及其周围或铭文圆之间的差距中,遵循数学预测,可以通过更改邮票结构尺寸(包括高度,音高和形状)来调整它们的尺寸。这些生成的表面分子模式可以用作生物识别阵列,也可以将其转移到下方的Au层以进行金属结构创造。通过将CLL过程与此差距现象相结合,以前被认为是使用的柔软的属性属性,可用于在简单的草图中实现低于10 nm的特征。
1.1 光学光刻基础知识 ..............................3 1.1.1 光学系统特性 .............。。。。。。。。。。。。。。。。4 1.1.1.1 分辨率。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4
这是从新兴技术观察站供应链探索者 (https://chipexplorer.eto.tech) 导出的。您可以在 https://chipexplorer.eto.tech/?filter-choose=input-resource&input- resource=N19 上查看此内容的网页版本。
一直遵循摩尔定律,根据该定律,通过光刻生产的集成电路的集成度会翻倍。到目前为止,这些微芯片主要采用波长为 193 nm 的光学光刻技术制造。为了实现 10 纳米以下的结构尺寸,必须使用极紫外光 (EUV):这可以实现更好的光学分辨率。然而,EUV 光刻面临着许多挑战。EUV 光被强烈吸收,因此必须在真空中进行曝光,并且在照明和成像系统中,必须将带透镜的折射光学器件替换为带镜子的反射光学器件。对要开发的光学器件的要求很高:它们需要高水平的研究和开发,以显著改善表面质量、材料成分、尺寸和形状。
茎特征:茎样品是通过直接转移方法制备的。首先,将TEM网格(Quantifoil Cu网格)直接放在带有MOTE 2丝带的SIO 2基板上。然后将液压(3μL)的KOH溶液(25%)滴在TEM网格的边缘,并扩散到该网格的底面,以蚀刻SIO 2层。之后,将带有TEM网格的SIO 2基材滴入DI水中以去除KOH残留物。最后,将TEM网格用镊子夹住,并放在滤纸上干燥。茎图像是在配备了高级茎校正器(ASCOR)探针校正器的一个像差校正的JEOL ARM-200F上进行的,该探针校正器以80 kV的加速电压运行。
主要应用 • 通过 DLW 和 2PP 进行快速非接触式原型制作 • 微系统技术中的光学应用 • 用于湿法和干法蚀刻工艺的蚀刻掩模 • 用于电镀的模具 • 用于印章制造/模板制造的模具
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
X射线的有效聚焦对于高分辨率X射线显微镜至关重要。称为运动型的衍射X射线光学在理论上提供了最高的焦点效率。但是,由于它们的纳米制作,它们长期以来一直无法使用。最近,使用3D激光光刻在近红外波长下实现了包括运动型在内的各种X射线光学几何形状。由于运动型的最小特征(周期)决定了解决能力,因此有一种自然的动力来寻找用较小特征的kino形式制造的kino形式。在这里,使用具有405 nm的激发波长的定制3D激光光刻设置,与以前的工作相比,它允许将运动型的最小时期一半。在扫描传输X射线显微镜图像分辨率方面提高了40%,即145 nm的截止分辨率,在700 eV时效率为7.6%。通过磁性样品的PtyChographic Imageing证明了一个重建的像素大小为18.5 nm,达到了显微镜设置的设计极限,该磁性样品的对比度强烈降低。此外,由405 nm 3D激光光刻制造的X射线镜头有可能比其他手段制成的X射线镜头便宜得多。