比较大的SOC(较小的硅区域)可行,但能够合并以近似较大(更昂贵)的SOC。航空航天应用寻求高性能,但低量使它很困难,因为即使是单个应用程序案例,大型定制ASIC的费用也很难,而在各种航空航天项目中发现的多样性都要少得多。使用chiplet概念,可以承销较小的图1。四核SOC参考体系结构。图2。参考体系结构的扩展。4个基本块,可以在许多安排中结合使用,以适合这些不同的应用程序,以适合许多单独的自定义设计的价格。与当代的耐受性处理器相比,该处理器是内置的,这些处理器是内置的,即尾随边缘半导体技术(例如150 nm),即使是建立在更先进的节点(例如32nm)中的单个芯片组也代表了替代性能的增长。追求chiplet作为模块化策略的希望是要比以前的处理器的逐步实现越来越多地实现,而是提供一种能够将有效扩展到更高水平的性能和更大的功能的方法。很高兴地,奇普特概念可以收获嵌入式构成中的重要发展。主要的是MulɵcoreCompuɵng的出现。现在不是这种情况,很难忘记清洁大型conty的大型耦合的单片locaɵon的方法,而芯片组的想法可能会不利。出于多种原因,在过去的15年中越来越有能力的整体式(单核)组合的进展(借助时钟速度的升级速度标记),将企业推向了整体式的企业,以将整体式的量化计划(核心)(核心)(内核)保存为整体性能,以保持整体性能。嵌入式组合中的第二种criɵcal时尚是朝着异质构成的方式,那里有许多类型的计算机存在于同一复杂的小工具中。在这种情况下,使用“样式”,我们指出,人们相信,几种倾向于通过常规结构驱动(例如,可预测的基于流的处理,可以利用管道上的“可电路”形式,这些形式可以在区域可编程阵列中实现,甚至可以随机地进行了更少的预测分支(又有一个更加可预测的分门形状)(甚至更易于预测的形状)(并且都具有更大的分支形式(以及一个更大的线程形状)(并且都具有一个更大的分类形状(和图形)。没有任何单个处理体系结构可以彻底完成所有操作,主要用于包含处理类型的组合的结构。通常将具有mulɵcore处理器(对于标准 - 摩尔vecompuɵng,尤其是在深度处理中的线程处理),照片处理单元(用于大量的基于移动的处理),以及几个虚拟指示器处理单元(用于额外的型号的频率和无线电频率)。对,再次,chiplet的想法可以通过使用
Markets News 6 5G smartphone market share to rise from 19% to 43% this year Microelectronics News 10 Nexperia agrees to buy Newport Wafer Fab •Qorvo's quarterly revenue grows as infrastructure recovers despite supply constraints • Skyworks reports record fiscal Q3 revenue, up 52% year-on-year Wide-bandgap electronics News 16 ST manufactures its first 200mm SiC wafers • Cree | Wolfspeed和St扩展150毫米SIC晶圆供应协议超过8亿美元•Transphorm的JV Fab从Fujitsu到新的多数合作伙伴JCP•Akhan制造了首个300mm钻石片和加工设备新闻32 RIBER和LAAS-CNRS创建关节实验室Epenter•Veeco的Q2 Expenter•Veeco的Q2 Exenter Y YEAR 48%48%•AUIS AUICT HEAR 48•AN 48•AN 48 AN 48 AN 48 AN AN 48 AN AN 48 AN 48岁•AN 48 AN 48岁•AN•AN 48•AN 48岁• revenue up 21% • AXT's Q2 revenue up 52% • IQE sees strong Wireless growth for 5G handsets & WiFi 6 routers, offsetting drop for 5G infrastructure rollouts LED News 48 Porotech teams with μ LED panel firm Jade Bird Display • UCSB's DenBaars to receive AAFM-Nakamura Award • Osram presents first quantum dot LED in 2835 package Optoelectronics News 56 LiDAR receiver maker Luminar acquiring InGaAs photodetector chip partner OptoGration • BluGlass demos first RPCVD tunnel-junction laser diodes • PhotonicLEAP awarded over €5m in EU funding • SMART Photonics gains €13m loan from Rabobank Optical communications News 62 II-VI's CEO Mattera to replace Kramer as Chair • NeoPhotonics' revenue第二季度增长的回报•EMCORE的季度收入同比增长56%,这是由宽带驱动的,倍增了Photovoltaics News 67 Fraunhofer ISE Reports Reports Reports Record创敬的GAAS薄膜PV细胞在激光下的GAAS薄膜PV效率为68.9%。
我们将介绍一种新的芯片优先 FOWLP 替代方案,该替代方案可满足大量需要 FOWLP 等封装技术的应用的需求。这种新封装已在 ASE 投入生产一年多,并使用“芯片最后”方法来解决增加可用互连焊盘面积的问题。已用铜柱 (Cu) 凸块凸起的芯片被批量回流到低成本无芯基板上,然后进行包覆成型,该包覆成型也用作芯片底部填充。Cu 柱允许以 50 µm 或更小的间距直接连接到芯片焊盘,从而无需在芯片上形成 RDL。使用嵌入式迹线允许细线和间距低至 15µm 或更小,并直接键合到裸铜上。Cu 柱键合到铜迹线的一侧,焊球或 LGA 焊盘直接位于铜的另一侧。这使得基板实际上只与走线中使用的铜一样厚,并使最终封装的厚度达到 400µm。由于这使用现有的大批量封装基础设施,因此可以轻松实现更复杂的组装,包括多个芯片、包含无源元件和 3D 结构。我们将此封装结构指定为“扇出芯片后封装 (FOCLP)”对于高端应用,我们将展示使用高密度基板工艺用于要求更高的芯片后扇出封装的能力关键词芯片先、芯片后、扇出、晶圆级封装
本文介绍了一种新型超大面积集成电路 (ELAIC) 解决方案(我们称之为“巨型芯片”),适用于将不同类型的多个芯片(例如,内存、专用集成电路 [ASIC]、中央处理器 [CPU]、图形处理单元 [GPU]、电源调节)组合到通用互连平台上的单个封装中。巨型芯片方法有助于重新构建异构芯片平铺,以开发具有所需电路密度和性能的高度复杂系统。本文重点介绍了最近关于大面积超导集成电路连接多个单独芯片的研究,特别关注了在单个芯片之间形成的高密度电互连的处理。我们重新制造了各种巨型芯片组件,并使用多种技术(例如扫描电子显微镜 (SEM)、光学显微镜、共聚焦显微镜、X 射线)对其进行了表征,以研究集成质量、最小特征尺寸、硅含量、芯片间间距和间隙填充。二氧化硅、苯并环丁烯 (BCB)、环氧树脂、聚酰亚胺和硅基电介质用于间隙填充、通孔形成和重分布层 (RDL)。对于巨型芯片方法,通过减少芯片间 (D2D) 间隙和增加硅含量来提高热稳定性,从而使组装人员能够缓解不同基板/模块集成方案的热膨胀系数 (CTE) 不匹配的问题,这对于实现从回流到室温甚至低温操作的宽温度范围稳定性非常重要。 Megachip 技术有助于实现更节省空间的设计,并可容纳大多数异构芯片,而不会影响稳定性或引入 CTE 不匹配或翘曲。各种异构芯片
D 集成是先进封装和异构集成中的关键技术——它有助于系统级性能扩展。虽然封装的发展引入了 3D 集成,从封装系统发展到堆叠集成电路 (IC) 和 3D 片上系统,但该行业目前正在见证另一个重要转折点:背面供电网络 (BSPDN)。在传统的扩展方法中,信号和供电共存于晶圆的正面。然而,对电力(尤其是供电)日益增长的需求,越来越限制了实现可扩展解决方案的能力。高效的晶体管扩展对于实现更高的晶体管密度至关重要,这需要按比例扩展供电网络。然而,这遇到了巨大的 IR 压降挑战,导致晶体管性能受损。此外,信号和电源的互连设计变得高度相互依赖,构成了供电布线过程的很大一部分(至少 20%)。此外,随着扩展到下一个节点,功率密度会迅速增加。行业共识是通过实施 BSPDN 来分离信号和电源。这涉及隔离晶圆正面的信号网络,并利用晶圆对晶圆键合来高效地访问晶体管背面以进行电源分配和管理。主要优势包括更宽的电源线和更低的 IR 压降、更均匀的电压分布,以及最重要的,更多的设计空间,从而进一步缩小标准单元高度。BSPDN 消除了在晶圆正面共享信号和电源线之间互连资源的需要。顾名思义,背面供电将电源重新定位到背面
但是,没有逻辑元素,此类系统的编码功能不足以编程任意算法。尽管在十年前的液滴的压力调节流中显示了单个逻辑操作,但事实证明,15,16,24的进一步整合被证明是困难的,抑制了具有非平凡功能的系统的创建。先进的内置控制仍然是微流体学的最重要,最开放的问题之一,从而阻碍了与实验室芯片概念一致的自主和便携式设备的开发。在这里,我们解决了这个问题,并提出了一个液滴逻辑平台,以构建具有多个内部状态的顺序逻辑单元。我们使用的水滴不弄湿通道壁,被油包围为潮湿通道壁的连续相(CP)。大于通道横截面大的液滴在壁之间挤压。这个特殊的环境将液滴的高度限制在毛细血管上主导重力的尺寸,从而使后者可忽略不计。因此,毛细血管最小化表面积,形成带有圆形末端的细长塞子液滴。25界面曲率引入了毛细管压力差P L,该毛细血管差p l跨界面维持,并由年轻 - 拉普拉斯方程描述,该液滴由宽度W和高度H的矩形通道限制为液滴,并且表面张力γ可以估计为P L =γ(2 H - 1-1-2 W - 1-2 W - 1)。在这里,我们假设液滴的末端的形状分别由Radii w /2和H /2的相对壁之间的圆圈开处方。26P L对管道的局部尺寸的依赖性意味着将液滴转移到更狭窄的区域会增加液滴内部的压力。因此,通道管腔的更改可用于为液滴建立毛细管井。