调节反义寡核苷酸(ASOS)为罕见的神经系统疾病提供治疗选择,包括患者特异性,个性化的ASOS,其中包括非常罕见的突变。受到米拉森(Milasen)的发展,1突变1药物(1m1m)和荷兰RNA治疗中心(DCRT)的启发,旨在发展特异性患者ASO,并分别治疗欧洲和荷兰的合格患者。将在指定的患者环境下提供治疗。我们的举措受益于欧洲药品局(EMA)在临床前校对研究,安全研究,复合和衡量治疗患者的福利和安全性方面的监管建议。我们在这里概述了这些相互作用中最重要的考虑因素,以及我们如何在欧洲境内制定和治疗合格患者的计划中实施此建议。
批次 数量 描述 2865325 10 kU SuperScript IV RT 200 U/µL 2830740 4 kU RNase 抑制剂 40 U/µL 2805294 0.45 kU E.coli RNase H 2 u/µL 2789387 0.25 mL 10mM dNTP 混合物 2810212 0.02 mL 总 HeLa RNA 10 ng/µL 2794806 0.025 mL 反义对照引物,10µM 2789394 0.25 mL 随机六聚体,50 ng/µL 2789395 0.05 mL Oligo (dT)20,50 µM 2839396 0.025 mL 正向对照引物, 10 µM 2789374 1 mL 5X SuperScript™ IV RT 缓冲液 2821527 0.25 mL 0.1 M DTT 2825122 1.2 mL DEPC 处理水
当前的精神分裂症治疗方法主要集中在基因组的蛋白质编码部分上。在这种情况下,microRNA的角色受到了更少的关注。在本研究中,我们分析了精神分裂症患者的血液和尸体后大脑中的微肿瘤组,表明在前额叶皮层和患者血液中miR-99b-5p的表达都被下调。降低小鼠中的miR-99b-5p量会导致精神分裂症样表型和与小胶质细胞突触修剪有关的炎症过程。小胶质miR-99b-5p填充的闪光反应需要Z-DNA结合蛋白1(ZBP1),我们将其识别为一种新型的miR-99b-5p靶标。反义寡核苷酸针对ZBP1改善miR-99b-5p抑制作用的病理作用。我们的发现表明,小胶质细胞中新型的miR-99b-5p-ZBP1途径可能有助于精神分裂症的发病机理。
有效提取药物分析物是药物代谢和药代动力学(DMPK)研究的关键方面。这长期用于小分子,仍然适用于寡核苷酸的生物分析。寡核苷酸药物及其代谢产物必须在生物流体和组织样品中进行定量。最新的寡核苷酸药物都经过广泛修饰和共轭。这些修改后的残基和共轭部分会使提取恢复和可重复性复杂化。在这项工作中,我们报告了有关如何实现改进提取的几个关键见解。使用弱阴离子交换(WAX)基于微板的固相萃取(SPE)设备来研究溶剂辅助蛋白酶K样品预处理的方案。直接注射LC-MS定量已证明了所有三种反义寡核苷酸(ASOS)的定量。
简单摘要:基于核酸的药物的使用是抗肿瘤治疗的有希望的方向。在某些医学领域,已经开发并将某些修饰的寡核苷酸类似物(例如反义寡核苷酸)进行开发并用作创新的治疗剂。已经设计了许多具有预定形状和功能特征的DNA纳米材料的方法。因此,已将有效抗肿瘤药物的分子(包括阿霉素,治疗性寡核苷酸和复杂纳米颗粒)加载到或与基于DNA的纳米材料相结合。发现基于DNA的纳米材料可以增加细胞药物摄取的效率。在这篇综述中,我们想提请人们注意一些基于DNA的纳米材料,例如四面体,折纸,DNA纳米管和适体,这些纳米材料已用作抗癌药物递送的载体,药物或靶分子。
为研究长非编码RNA(LNCRNA)的生物学功能是必要的有效的功能丧失研究。有各种方法可用,包括RNA沉默,反义寡素和基于CRISPR的基因组编辑。基于CRISPR的基因组编辑是在基因组水平上灭活LNCRNA功能的最广泛使用的。可以通过删除启动子和第一个外显子(PE1)来实现LNCRNA函数,引入前末端poly(a)信号,或删除整个位点,这与Messenger RNA(mRNA)使用的框架策略不同。然而,lncRNA和邻居基因之间的复杂基因组相互作用使得准确解释lncRNA功能具有挑战性。本文讨论了每种LNCRNA敲除方法的优点和缺点,并设想了促进LNCRNA功能研究的潜在未来方向。
胰腺癌 (PC) 是最致命的癌症之一,5 年生存率接近 10%。由于 PC 具有高度异质性、促纤维化肿瘤微环境和低效药物渗透性,目前推荐用于治疗 PC 的化疗策略临床获益有限。基于核酸的靶向疗法已成为药物发现和靶向治疗领域的强大竞争对手。大量证据表明,基于抗体或适体的策略在很大程度上促进了药物在肿瘤中的积累增加,同时降低了系统性细胞毒性。本综述介绍了反义寡核苷酸 (ASO)、小干扰 RNA (siRNA)、微小 RNA (miRNA)、信使 RNA (mRNA) 和适体-药物偶联物 (ApDC) 在 PC 治疗中的进展,揭示了 PC 治疗的光明应用和发展方向。
摘要:多聚谷氨酰胺脊髓小脑共济失调 (SCA) 是由单个基因编码区胞嘧啶-腺嘌呤-鸟嘌呤重复扩增引起的六种常染色体显性共济失调的异质性群体。目前,这些疾病尚无治愈或减缓疾病的治疗方法,但它们的单基因遗传为基因治疗策略的发展提供了理论依据。事实上,RNA 干扰策略已在 SCA1、SCA3、SCA6 和 SCA7 的细胞和/或动物模型中显示出有希望的发现。此外,反义寡核苷酸疗法已在 SCA1、SCA2、SCA3 和 SCA7 模型中提供了令人鼓舞的概念证明,但它们尚未进入临床试验。相反,基因编辑策略,例如成簇的规律间隔的短回文重复序列 (CRISPR/Cas9),已被引入
药物发现和开发是一个复杂的过程,需要投入大量的时间和金钱。项目通常从根据靶标与疾病的关联性选择靶标开始,并评估可能的“可药性”。1 随后,可以决定是继续采用传统的小分子方法、生物制剂(抗体或片段)还是采用正在开发的许多新方法之一,例如反义寡核苷酸或靶向蛋白质降解剂。项目非常重视疗效和靶标与疾病的关联性。但是,由于大多数项目的失败都是由于安全性,其中约 25-50% 是由于药物靶标本身,2 因此必须将安全性作为药物设计的一部分。从安全的角度来看,每种方法都有自己的优势和风险。例如,小分子可能与脱靶化学毒性有关,例如 hERG 易感性或肝脏药物转运蛋白抑制。类似地,抗体和寡核苷酸可能与免疫原性和/或肾毒性有关
摘要 背景 尽管免疫检查点抑制剂已成为临床肿瘤学的突破,但这些疗法未能在相当一部分患者中产生持久的反应。这种缺乏长期疗效的原因可能是预先存在的连接先天免疫和适应性免疫的网络较差。在这里,我们提出了一种基于反义寡核苷酸 (ASO) 的策略,该策略双重靶向 Toll 样受体 9 (TLR9) 和程序性细胞死亡配体 1 (PD-L1),旨在克服对抗 PD-L1 单克隆疗法的耐药性。 方法 我们设计了一种高亲和力免疫调节 IM-TLR9:PD-L1-ASO 反义寡核苷酸(以下简称 IM-T9P1-ASO),靶向小鼠 PD-L1 信使 RNA 并激活 TLR9。然后,我们进行了体外和体内研究,以验证 IM-T9P1-ASO 在肿瘤和引流淋巴结中的活性、功效和生物学效应。我们还进行了活体成像,以研究肿瘤中的 IM-T9P1- ASO 药代动力学。结果 IM-T9P1-ASO 疗法与 PD-L1 抗体疗法不同,可在多种小鼠癌症模型中产生持久的抗肿瘤反应。从机制上讲,IM-T9P1-ASO 激活了肿瘤相关树突状细胞 (DC) 的状态,本文称为 DC3,它们具有强大的抗肿瘤潜力但表达 PD-L1 检查点。IM-T9P1- ASO 有两个作用:它通过与 TLR9 结合触发 DC3 的扩增并下调 PD-L1,从而释放 DC3 的抗肿瘤功能。这种双重作用导致 T 细胞排斥肿瘤。 IM-T9P1-ASO 的抗肿瘤功效取决于 DC3 产生的抗肿瘤细胞因子白细胞介素 12 (IL-12) 和 DC 发育所需的转录因子 Batf3。结论通过同时靶向 TLR9 和 PD-L1,IM-T9P1-ASO 通过 DC 激活放大抗肿瘤反应,从而在小鼠中产生持续的治疗效果。通过强调小鼠和人类 DC 之间的差异和相似之处,本研究可用于为癌症患者制定类似的治疗策略。