摘要 — 在本研究中,我们研究了双栅极反馈场效应晶体管 (FBFET) 器件的温度相关行为,该器件在一定温度范围 (300 K 至 400 K) 内表现出陡峭的开关特性。我们使用技术计算机辅助设计 (TCAD) 模拟分析温度特性。FBFET 是在正反馈回路中工作的半导体器件,其中通道区域中的电子和空穴调节势垒和壁的能量状态。FBFET 表现出出色的亚阈值摆幅和高开/关比,这归因于正反馈现象,从而产生理想的开关特性。在模拟结果中,观察到随着温度的升高,导通电流 (I ON )、关断电流 (I OFF ) 和导通电压 (V ON ) 均增加,而开/关电流比降低。此外,通过调节固定栅极电压可以维持高温下的操作。通过模拟结果,我们定性地研究了 FBFET 中各种器件参数随温度变化的变化,并进行了详细讨论。
无定形的氧化物半导体晶体管已成为展示面板中的成熟技术,并且最近被认为是用于单片3D应用的有希望的后端兼容通道材料。然而,实现具有与传统晶体半导体相当的性能的高弹性无定形半导体材料一直是一个长期的问题。最近发现,通过原子层沉积(ALD)工艺实现的氧化im氧化物的厚度可以调整其材料特性以实现高迁移率,高驱动电流,高/o效比,并在同一时间超出了传统氧化物半导体材料的功能。在这项工作中,综述了这项工作的历史,导致氧化含量重新出现,其基本材料特性,侧重于ALD的生长技术,最先进的氧化辅助设备研究以及设备的偏置稳定性。
谷物宽度和重量2(GW2)是一种E3-泛素连接酶编码基因,对谷物物种中谷物的大小和重量负调节。因此,建议禁用GW2基因活性以提高作物生产率。我们在这里表明,大麦GW2.1同源物的CRISPR/CAS介导的诱变会导致细长谷物的发展和蛋白质含量增加。同时,GW2.1功能的损失引起了由于尖峰数量减少和谷物设置低而引起的明显晶粒屈服不足。我们还表明,GW2.1缺乏作物产量和蛋白质含量引起的相反作用在很大程度上与培养条件无关。这些发现表明大麦GW2.1基因对于产量和晶粒性状之间的优化是必需的。总的来说,我们的数据表明,大麦中GW2.1基因活性的丧失与多效性效应相关,对生成器官的发展以及因此谷物产生产生了负面影响。我们的发现有助于更好地理解谷物的发育以及GW2.1控制大麦的定量和定性遗传改善中控制的UTI。
可以识别和测量生物分子的传感器的发明是生物学的关键进步。传感器已在多个行业中广泛使用,最著名的是在医学诊断领域。生物传感器通过整合信号转换和生物识别成分来构成生物检测系统。它们已针对广泛的生物检测应用开发。一类称为电化学生物传感器的生物传感器使用电分析设备,并具有更高敏感性,简单性,速度和生物分子识别选择性的优势。如今最受欢迎的电化学生物传感器之一是ISFET传感器,它执行生化测量和生物分子识别。ISFET最初是在五十多年前提出的,现在使用ISFET制造了最有前途的护理诊断和实验室设备。在本综述的论文中,提出了ISFET的历史,工作原理,制造过程以及建模和仿真技术。此外,还解释了一些物理方面和仿真方法。最后,我们讨论了它们在敏感和可靠地分析包括DNA,酶和细胞在内的多种生物分子中的应用。
数十年来,由于摩尔法律[1],互补金属 - 氧化物半导体(CMOS)技术的连续扩展导致了信息技术的革命性发展,该法律规定,微芯片的密度每24个月增加了一倍。但是,由于由短通道效应等现象引起的泄漏电流,MOS场效应晶体管(MOSFET)会遇到限制[2]。尤其是由于载体的热极限,在室温下,子阈值秋千的极限为60 mV/dec [3]。使用隧道效应,使用影响电离的电离效果(i-MOS)[8-11]等各种设备,例如使用影响电离的电离MOS(I-MOS)[8-11] [12-24] [12-24] [12-24]使用反馈现象来克服这些限制。fbfet通过调节诸如p-n-p-n之类的结构中的潜在屏障,使用正反馈机制表现出陡峭的开关特性。第一次提出的FBFET通过将电荷捕获在栅极侧壁间隔物中来调节电势垒。然而,由于间隔区域的附加过程和不稳定性,已经提出了结构,以浓重的掺杂掺杂现有的间隔区区域,或用额外的栅极电极代替它[14,15]。这些结构相对稳定,可以在带有附加栅极电极的单个设备中重新配置p和n型[13]。但是,对于在P和N型操作模式中重新配置的四端设备结构的其他门电压调制是必需的。在这项研究中,我们提出了一个可重新选择的FBFET,可以通过控制单门电压调制来以P和N型模式进行操作。单门电压允许注射孔(P型)或电子(N型),以进行正反馈回路。与其他可重新配置的FET(RFET)[25-29]相反,该FET(25 - 29])通过阻碍注射不希望的荷载体,对电子和孔显示单极传导,可重新选择的FBFET使用电子和孔进行电流。因此,我们的设备表现出对P和N型配置的对称特征。
摘要 — 单片 3D 集成已成为满足未来计算需求的有前途的解决方案。金属层间通孔 (MIV) 在单片 3D 集成中形成基板层之间的互连。尽管 MIV 尺寸很小,但面积开销可能成为高效 M3D 集成的主要限制因素,因此需要加以解决。以前的研究主要集中在利用 MIV 周围的基板面积来显着降低该面积开销,但却遭受了泄漏和缩放因子增加的影响。在本文中,我们讨论了 MIV 晶体管的实现,它解决了泄漏和缩放问题,并且与以前的研究相比,面积开销也有类似的减少,因此可以有效利用。我们的模拟结果表明,与之前的实现相比,对于所提出的 MIV 晶体管,漏电流 (ID,leak) 减少了 14 K ×,最大电流 (ID,max) 增加了 58%。此外,使用我们提出的 MIV 晶体管实现的逆变器的性能指标,特别是延迟、斜率和功耗降低了 11.6%,17.与之前的实现相比,在相同的 MIV 面积开销减少的情况下,分别降低了 4.9% 和 4.5%。索引术语 — 单片 3D IC、垂直集成、片上器件
热电子晶体管 (HET) 代表了一种令人兴奋的新型半导体技术集成器件,它有望实现超越 SiGe 双极异质晶体管限制的高频电子器件。随着对石墨烯等 2D 材料和新器件架构的探索,热电子晶体管有可能彻底改变现代电子领域的格局。这项研究重点介绍了一种新型热电子晶体管结构,其输出电流密度创下了 800 A cm − 2 的记录,电流增益高达 𝜶,采用可扩展的制造方法制造。该热电子晶体管结构包括湿转移到锗衬底的 2D 六方氮化硼和石墨烯层。这些材料的组合可实现卓越的性能,尤其是在高饱和输出电流密度方面。用于生产热电子晶体管的可扩展制造方案为大规模制造开辟了机会。热电子晶体管技术的这一突破为先进的电子应用带来了希望,可在实用且可制造的设备中提供大电流能力。
1. 引言近年来,OLED 技术的巨大进步 [1,2,3] 和有机光伏 (OPV) 的迅猛发展证明了有机电子器件的工业和商业潜力。有报道称,体异质结设计中的经典有机光伏器件的效率接近 20%,而钙钛矿的效率甚至超过了这个值。这些里程碑式的进步使得此类发展如今既适用于小规模也适用于大规模应用 [4,5]。尽管如此,尽管最近电子器件和传感器取得了令人瞩目的进步,但下一代 OLED、太阳能电池和印刷电路(基于有机场效应晶体管 (OFET))的制造在寻找新型更高性能半导体、基板和封装材料、电介质和加工条件 [6–11] 等方面仍面临挑战。有机材料在 RF 范围内(即兆赫甚至更高频率)在空气中的稳定运行将支持许多能够与硅基 CMOS 电路竞争的新技术的开发 [8,12–18]。当这些新型电子元件与生物传感元件相结合时,将为开发一次性诊断和药物输送技术开辟可能性[19–29]。
抽象的二维基于材料的现场效应晶体管有望在电子和光电应用中使用。但是,晶体管中存在的陷阱状态已知会阻碍设备性能。他们在通道中捕获 /释放载体,并导致转移特征的滞后。在这项工作中,我们在两个不同的栅极介电介质SIO 2和H-BN上制造了MOTE 2场效应的晶体管,并研究了温度依赖性的电荷捕获行为在其传递曲线中的滞后。我们观察到,带有Sio 2后挡栅介电的设备受Sio 2绝缘子陷阱和MOTE 2的影响,后者在310 K以上的温度下变得突出。在传导带边缘以下389 MEV处的捕获能级。从发射电流瞬态测量中观察到了传导带边缘以下396 MeV的类似能级。从以前的计算研究中,我们预计这些陷阱状态将成为柜员的空缺。我们的结果表明,可以通过仔细选择栅极绝缘体来减少MOTE 2处效应晶体管中的电荷陷阱,从而为设备制造提供指南。
请注意!本文件仅供参考,本文提供的任何信息在任何情况下均不视为对我们产品的任何功能、条件和/或质量或任何特定用途适用性的保证、担保或描述。关于我们产品的技术规格,我们恳请您参考我们提供的相关产品数据表。我们的客户及其技术部门需要评估我们的产品是否适合预期用途。