经验支持,1现代财务理论的主要观点是,在股息支付资产中产生资产价格泡沫存在根本困难。本文通过提供稳健的例子经济体来挑战这种观点,在这种经济体中,资产价格泡沫对于平衡存在必要,并将泡沫的出现与经济增长和宽松的财务状况联系起来。生成资产价格气泡的根本困难可以由Spininal Santos和Woodford(1997)泡沫不可能的定理来总结:他们的定理3.3指出,如果总质基的现值是有限的,那么资产的价格是正面供应量或具有有限净额的资产价格或有限的效果。由于现实中的大多数资产都处于正净供应量(例如股票和土地)或具有有限的成熟度(例如债券和期权),以便在现实环境中产生泡沫,因此有必要构建模型,在该模型中,总质量的现值是无限的。除了风格化的重叠世代(OLG)模型外,由于有限的生活,个人最优性和无限的现值可能是一致的,还必须考虑具有金融摩擦的模型。具有足够的财务限制,个人最优化和无限的现值可能是一致的,因为财务限制可以阻止代理资本化捐赠的无限现值。2
摘要 —近年来,量子计算界见证了大量在近期硬件上实现非平凡量子计算的新方法。一个重要的研究方向是将任意纠缠态(表示为幺正)分解为量子电路,即量子处理器支持的一系列门。众所周知,对于当前嘈杂的中等规模量子设备而言,分解时间较长和多量子比特门纠缠较多的电路容易出错。为此,人们对开发基于启发式的方法来发现紧凑电路产生了浓厚的兴趣。我们为此做出了贡献,提出了 QuantumCircuitOpt (QCOpt),这是一个新颖的开源框架,它实现了数学优化公式和算法,用于将任意幺正门分解为一系列硬件原生门。QCOpt 的一个核心创新是它为其生成的量子电路提供最优性保证。具体来说,我们表明 QCOpt 可以将最多四个量子比特的电路中所需的门数量减少 57%,并且在商用计算硬件上的运行时间不到几分钟。我们还通过与简单的强力枚举算法进行比较,验证了 QCOpt 作为量子电路设计工具的有效性。我们还展示了 QCOpt 包如何适应各种内置类型的本机门集,这些门集基于不同的硬件平台,例如 IBM、Rigetti 和 Google 生产的硬件平台。我们希望这个包将促进量子处理器设计人员以及量子物理学家进一步探索算法。
在控制随机系统中,低概率事件可能使系统走上灾难性的轨迹,而控制的挑战在于开发一种强大的能力来应对此类事件,而不会显著损害基线控制策略的最优性。本文介绍了 CelluDose,一种经过随机模拟训练的深度强化学习自适应反馈控制原型,用于针对随机和异质细胞增殖的自动精准药物给药。药物耐药性可能由目标细胞群的随机和可变突变引起;如果没有适当的给药策略,新出现的耐药亚群会增殖并导致治疗失败。动态反馈剂量控制有望对抗这种现象,但由于细胞动力学的复杂性、模型参数的不确定性以及医疗应用中需要一个可以信赖的鲁棒控制器来正确处理意外结果,将传统控制方法应用于此类系统充满了挑战。在这里,对样本生物场景的训练确定了单一药物和联合治疗策略,这些策略在抑制细胞增殖和应对各种系统扰动方面表现出 100% 的成功率,同时建立了低剂量无事件基线。这些策略被发现对关键模型参数的变化具有高度的鲁棒性,这些参数受显著不确定性和不可预测的动态变化的影响。关键词:强化学习、深度学习、控制、自适应剂量、耐药性
4 图 2 摘自 Joskow (2019),第 314 页,经牛津大学出版社许可使用。 5 此外,在美国联邦层面,仅由太阳能发电机充电的储能设施有资格获得 30% 的投资税收抵免。 6 例如,请参阅 https://www.dwt.com/blogs/energy--environmental-law-blog/2020/06/federal-energy-storage-regulatory-activity 7 许多研究调查了在不同成本假设和观察到的价格轨迹下能源套利的盈利能力;例如,请参阅 Salles 等人 (2017) 和 Giuletti 等人 (2018)。通常的发现是,在当前价格模式下,套利利润无法覆盖储能设施的资本成本。这一发现并未阐明当存储可用且部署存储可带来边际利润时能源市场所提供的投资激励的总体最优性,因为能源价格比现在波动更大。8 请参阅 Dréze (1964) 对 Boiteux 最初在 20 世纪 50 年代初撰写的著作的精辟阐述,并请参阅 Joskow (1976) 对密切相关的后期著作的讨论。Joskow 和 Tirole (2007) 大大扩展了这些文献。9 请参阅 Joskow 和 Tirole (2007) 关于这一假设的论述,我将在第 5 节中返回讨论。如果能源价格上限低于损失负荷的价值,而许多实际市场似乎都是这种情况,那么对发电的投资激励就不足;请参阅 Joskow (2007, 2008) 的讨论。美国和欧盟的许多系统中都增加了各种“容量机制”,以解决这种“资金缺失”问题。
组合优化已应用于从航空航天到交通规划和经济学等众多领域。其目标是在有限的可能性集合中找到最佳解决方案。组合优化面临的众所周知的挑战是状态空间爆炸问题:可能性的数量随着问题规模的增加而呈指数增长,这使得解决大问题变得困难。近年来,深度强化学习 (DRL) 已显示出其在设计专门用于解决 NP 难组合优化问题的良好启发式方法方面的前景。然而,当前的方法有两个缺点:(1)它们主要关注标准旅行商问题,不能轻易扩展到其他问题,(2)它们仅提供近似解,没有系统的方法来改进它或证明最优性。在另一个背景下,约束规划 (CP) 是解决组合优化问题的通用工具。基于完整的搜索过程,如果我们允许执行时间足够长,它将始终找到最佳解决方案。一个关键的设计选择是分支决策,它决定了如何探索搜索空间,这使得 CP 在实践中变得不可或缺。在这项工作中,我们提出了一种基于 DRL 和 CP 的通用混合方法来解决组合优化问题。我们方法的核心是基于动态规划公式,它充当了两种技术之间的桥梁。我们通过实验表明,我们的求解器可以有效解决两个具有挑战性的问题:带有时间窗口的旅行商问题和 4 矩投资组合优化问题。获得的结果表明,引入的框架优于独立的 RL 和 CP 解决方案,同时与工业求解器具有竞争力。
摘要 —本文考虑了量子密钥分发 (QKD) 网络中以最大可实现速率进行安全数据包路由的问题。假设 QKD 协议为多跳网络中每条链路上的安全通信生成对称私钥。量子密钥生成过程受噪声影响,假设由随机计数过程建模。首先使用每跳可用的量子密钥对数据包进行加密,然后通过通信链路以点对点方式传输。在这种情况下出现的一个基本问题是设计一种安全且容量可实现的路由策略,该策略考虑到加密量子密钥的可用性随时间变化以及传输的有限链路容量。在本文中,通过将 QKD 协议与通用最大权重 (UMW) 路由策略 [1]–[3] 相结合,我们设计了一种新的安全吞吐量最优路由策略,称为串联队列分解 (TQD)。 TQD 有效地解决了多种流量(包括单播、广播和多播)的安全路由问题。本文的主要贡献之一是表明该问题可以简化为转换网络上的通常的广义网络流问题,而不受密钥可用性约束。模拟结果表明,与最先进的路由和密钥管理策略相比,所提出的策略产生的延迟要小得多。所提出的策略的吞吐量最优性的证明利用了 Lyapunov 稳定性理论以及对密钥存储动态的仔细处理。索引术语 — 量子密钥分发、吞吐量最优路由、网络算法。
可持续性挑战本质上涉及对多个相互竞争的目标的考虑。帕累托边界(即所有最优解的集合,这些解不能针对一个目标进行改进,否则会对另一个目标产生负面影响)是应对可持续性挑战的关键决策工具,因为它强调了相互冲突的目标之间的内在权衡。我们的研究动机是亚马逊河流域水电战略规划,亚马逊河流域是地球上最大、生物多样性最丰富的河流系统之一,增加能源生产的需求与最大限度地减少有害环境影响的迫切要求不谋而合。我们研究了一种将水电与浮动光伏太阳能电池板 (FPV) 配对的创新战略。我们提供了一种新的扩展多树网络公式,可以考虑多种水坝配置。为了应对扩大帕累托优化框架以解决整个亚马逊河流域的多个目标的计算挑战,我们通过两项改进进一步增强了树形结构网络中帕累托边界的最先进的算法。我们引入了由子边界引起的仿射变换来计算帕累托优势,并提供了合并子树的策略,从而显著提高了优势解决方案的修剪率。我们的实验表明,在保持最优性保证的同时,速度显著提高,在某些情况下甚至提高了一个数量级以上,从而使我们能够更有效地近似帕累托边界。此外,我们的研究结果表明,当将混合水电与 FPV 解决方案配对时,帕累托边界的能量值会显著向更高的方向转变,从而有可能在减轻不利影响的同时扩大能源生产。
我们研究了量子断层扫描和阴影断层扫描的问题,方法是对未知 d 维状态的各个相同副本进行测量。我们首先重新审视已知的量子断层扫描下限 [ HHJ + 17 ],精度为 ϵ(迹线距离),此时测量选择与先前观察到的结果无关,即,它们是非自适应的。我们通过适当分布之间的 χ 2 散度简洁地证明了这些结果。与之前的工作不同,我们不要求测量值由秩一运算符给出。当学习者使用具有恒定数量结果的测量值(例如,两个结果测量值)时,这会导致更强的下限。特别是,这严格建立了民间传说“泡利断层扫描”算法在样本复杂度方面的最优性。在非自适应情况下,我们还分别推导出使用任意和恒定结果测量学习秩为 r 的状态的 Ω ( r 2 d / ϵ 2 ) 和 Ω ( r 2 d 2 / ϵ 2 ) 的新界限。除了样本复杂度之外,学习量子态的一个具有实际意义的资源是所需的唯一测量设置的数量(即算法使用的不同测量的数量,每种测量可能具有任意数量的结果)。基于这种考虑,我们采用合适分布的 χ 2 散度测度集中来将我们的下限扩展到学习者从一组固定的 exp ( O ( d )) 个可能测量中执行可能的自适应测量的情况。这尤其意味着自适应性不会给我们带来使用可有效实现的单拷贝测量的任何优势。在目标是预测给定可观测量序列的期望值的情况下,我们也得到了类似的界限,这项任务称为阴影层析成像。最后,在可利用多项式大小电路实现的自适应单拷贝测量的情况下,我们证明了基于计算给定可观测量的样本均值的直接策略是最佳的。
摘要:在考虑一组系统的健康预测的同时,在破坏性环境中对飞机机队进行基于条件的维护 (CBM) 调度是一个非常复杂的组合问题,鉴于健康预测中包含的不确定性,该问题变得更具挑战性。此类问题属于不确定条件下资源受限调度问题的大类,通常使用混合整数线性规划 (MILP) 公式来解决。虽然 MILP 框架非常有前景,但问题规模可以随着考虑的飞机数量和考虑的任务数量呈指数级增长,从而导致计算成本显着增加。人工智能的最新进展已经证明了深度强化学习 (DRL) 算法能够缓解这种维数灾难,因为一旦 DRL 代理经过训练,它就可以实现维护计划的实时优化。但是,不能保证最优性。文献中尚未讨论 MILP 和 DRL 公式在飞机机队维护调度问题中的比较优点。本研究是对这一研究空白的回应。我们对 MILP 和 DRL 调度模型进行了比较,这两个模型用于在破坏性环境中为不同规模的飞机机队的各种维护场景得出最佳维护计划,同时考虑健康预测和执行每项任务的可用资源。根据根据实际航空公司实践定义的四个规划目标来评估解决方案的质量。结果表明,DRL 方法在预测驱动任务的调度方面取得了更好的结果,并且需要更少的计算时间,而 MILP 模型可以产生更稳定的维护计划并减少维护地面时间。总体而言,该比较为将健康预测整合到航空公司维护实践中提供了宝贵的见解。
摘要 - 自主驾驶系统(ADS)测试对于ADS开发至关重要,目前的主要重点是安全性。然而,对非安全性能的评估,尤其是广告做出最佳决策并为自动驾驶汽车(AV)提供最佳途径的能力,对于确保智力和降低AV风险的智力也至关重要。当前,几乎没有工作来评估ADSS路径规划决策(PPD)的鲁棒性,即,在环境中无关紧要的变化后,广告是否可以维持最佳的PPD。关键挑战包括缺乏评估PPD最优性的清晰牙齿,以及寻找导致非最佳PPD的场景的困难。为了填补这一空白,在本文中,我们专注于评估ADSS PPD的鲁棒性,并提出了第一种方法,分区者,用于生成非最佳决策方案(NODSS),其中ADS不计划AVS的最佳路径。测试器包括三个主要组成部分:非侵入性突变,一致性检查和反馈。为了克服甲骨文挑战,设计了非侵入性突变以实施保守的修改,从而确保了在突变场景中保存原始的最佳路径。随后,通过比较原始场景和突变的场景中的驱动路径来应用一致性检查以确定非最佳PPD的存在。为了应对大型环境空间的挑战,我们设计了整合AV运动的空间和时间维度的反馈指标。这些指标对于有效地转向发射的产生至关重要。因此,分子可以通过生成新方案,然后在新方案中识别点头来生成点头。我们评估了开源和生产级广告Baidu Apollo上的分员。实验结果验证了分子在检测ADS的非最佳PPD中的有效性。它总共生成63.9个点头,而表现最佳的基线仅检测35.4个点头。