Loading...
机构名称:
¥ 1.0

摘要 - 自主驾驶系统(ADS)测试对于ADS开发至关重要,目前的主要重点是安全性。然而,对非安全性能的评估,尤其是广告做出最佳决策并为自动驾驶汽车(AV)提供最佳途径的能力,对于确保智力和降低AV风险的智力也至关重要。当前,几乎没有工作来评估ADSS路径规划决策(PPD)的鲁棒性,即,在环境中无关紧要的变化后,广告是否可以维持最佳的PPD。关键挑战包括缺乏评估PPD最优性的清晰牙齿,以及寻找导致非最佳PPD的场景的困难。为了填补这一空白,在本文中,我们专注于评估ADSS PPD的鲁棒性,并提出了第一种方法,分区者,用于生成非最佳决策方案(NODSS),其中ADS不计划AVS的最佳路径。测试器包括三个主要组成部分:非侵入性突变,一致性检查和反馈。为了克服甲骨文挑战,设计了非侵入性突变以实施保守的修改,从而确保了在突变场景中保存原始的最佳路径。随后,通过比较原始场景和突变的场景中的驱动路径来应用一致性检查以确定非最佳PPD的存在。为了应对大型环境空间的挑战,我们设计了整合AV运动的空间和时间维度的反馈指标。这些指标对于有效地转向发射的产生至关重要。因此,分子可以通过生成新方案,然后在新方案中识别点头来生成点头。我们评估了开源和生产级广告Baidu Apollo上的分员。实验结果验证了分子在检测ADS的非最佳PPD中的有效性。它总共生成63.9个点头,而表现最佳的基线仅检测35.4个点头。

分数:评估决策的鲁棒性 -

分数:评估决策的鲁棒性 -PDF文件第1页

分数:评估决策的鲁棒性 -PDF文件第2页

分数:评估决策的鲁棒性 -PDF文件第3页

分数:评估决策的鲁棒性 -PDF文件第4页

分数:评估决策的鲁棒性 -PDF文件第5页