摘要 光学超表面是平面纳米结构器件,具有工业吸引力,部分原因是它们利用高通量微电子制造技术来实现。因此,开发能够平衡高效波前响应实现和器件可制造性的设计范例至关重要。我们引入了一种基于梯度的自由曲面超表面设计框架,其中纳米级元素明确限制为基本形状、几乎均匀的特征尺寸和极低的纵横比。尽管超表面几何特征看似均匀,但这些器件能够利用非局部近场光耦合实现超越传统设计方法的高效和极端波前散射。利用这种方法,我们设计了简单的高数值孔径器件,例如能够实现衍射极限聚焦的光束偏转器和大面积超透镜。我们预计这些概念可以促进超表面的设计和集成到单片光学系统中。
摘要 — 物联网 (IoT) 设备对低功耗静态随机存取存储器 (SRAM) 单元的需求不断增长,这导致了各种 SRAM 单元拓扑的开发,这些拓扑可在保持性能和稳定性的同时最大限度地降低功耗。在本文中,我们基于不同的参数(例如功耗、延迟、面积、能量和稳定性)分析了各种 SRAM 设计。据观察,由六个晶体管组成的 6T SRAM 单元由于其简单性和低面积要求而成为使用最广泛的拓扑。然而,已经开发出更大的单元,例如 8T、9T 和 10T,以提高稳定性并降低功耗,尽管它们需要更多的面积。据观察,8T 在读取延迟方面效果更好,而 9T 在 9 方面效果更好。将 SRAM 单元缩小到更小的特征尺寸在保持稳定性和可靠性的同时最大限度地降低功耗方面提出了挑战。
摘要 成熟的 Abbe 公式是当今最常用的用于精确模拟半导体光刻中使用的部分相干投影系统图像的方法之一。接近理论分辨率极限的光刻成像系统的开发和应用以及对更大掩模区域的高精度模拟的需求需要对经典的 Abbe 方法进行几项扩展。本文介绍了 Abbe 方法的基础知识,包括所谓的霍普金斯假设。为了精确模拟当今的光刻系统,必须描述和考虑重要的物理效应,如强离轴照明、小特征尺寸、超高 NA、偏振相关行为、成像缩小、像差、切趾和琼斯瞳孔。本文介绍了 Abbe 方法的扩展。应用示例证明了新方法的准确性、灵活性和计算性能。 关键词:光刻模拟、图像模拟、图像建模、Abbe 方法
纳米尺度的界面热传输在各种应用中都至关重要,例如电子设备、[1] 储能应用、[2] 生物医学设备、[3] 光电子学、[4] 等。尽管当系统的特征尺寸达到纳米尺度时,跨界面的热传输变得更加关键[5],但是目前对界面热传输的基本理解还远未完成。不同类型的界面热传输存在于不同的应用中,主要有固-固和固-液界面热传输(见图 1a~b)。声子振动失配或表面粗糙度可以部分解释纳米级固-固界面热传输,[6] 然而,对于固-液或固-气界面热传输,由于缺乏周期性,液体中声子的定义仍然存在疑问。在这篇简短的评论中,我们回顾了界面热传输领域在能源和环境应用中的现状,其中涉及界面热传输,并对挑战和未解决的问题提出了我们的看法。
引言在过去的几十年里,集成电路的特征尺寸按照摩尔定律不断缩小。光学光刻已进入低 k -1 区域[1],[2],所用光的波长仍为193 nm。因此,使用传统光刻工艺获得高图案保真度和掩模版可印刷性变得越来越具有挑战性。此外,印刷晶圆图像对光刻条件的微小变化变得高度敏感。为了缓解这些问题,对光学光刻中的分辨率增强技术 (RET) 的要求变得更加严格[3],[4]。最广泛采用的 RET 之一是光学邻近校正 (OPC) [5],[6],[7],[8],[9]。传统OPC中,光刻掩模版针对主图案进行预失真处理,以补偿印刷晶圆图像的不良失真。然而,随着关键尺寸的缩小和目标图案的复杂化,仅使用OPC很难在足够的工艺窗口下获得令人满意的印刷图像。
引言在过去的几十年里,集成电路的特征尺寸按照摩尔定律不断缩小。光学光刻已进入低 k -1 区域[1],[2],所用光的波长仍为193 nm。因此,使用传统光刻工艺获得高图案保真度和掩模可印刷性变得越来越具有挑战性。此外,印刷晶圆图像对光刻条件的微小变化变得高度敏感。为了缓解这些问题,对光学光刻中的分辨率增强技术 (RET) 的要求变得更加严格[3],[4]。最广泛采用的 RET 之一是光学邻近校正 (OPC) [5],[6],[7],[8],[9]。传统OPC中,光刻掩模版针对主图案进行预失真处理,以补偿印刷晶圆图像的不良失真。然而,随着关键尺寸的缩小和目标图案的复杂化,仅使用OPC很难在足够的工艺窗口下获得令人满意的印刷图像。
电子封装的小型化是一个持续的趋势。制造商正在增加封装密度以适应更复杂的设计和更高的工作频率。表面贴装器件 (SMD) 和当今的制造工艺开始成为这种小型化的限制因素。这些问题的解决方案是嵌入式无源器件和新的全加成制造工艺。在这项工作中,使用称为顺序构建 - 共价键合金属化 (SBU-CBM) 的全加成工艺制造平面电感器。测试了一种用于 CBM 工艺的新嫁接材料,但在 FR4 基板上测试时发现它比以前使用的材料更差。发现高电感和高 Q 因数的平面电感器的最佳设计是圆形螺旋电感器。使用 SBU-CBM 工艺成功制造了特征尺寸为 75 µm 的平面圆形螺旋电感器。
化学机械平坦化 (CMP) 工艺已广泛用于平坦化硅基半导体器件中的各种材料,包括电介质、金属和半导体。它是实现纳米级晶圆和芯片级平坦度的最关键步骤之一。然而,在 CMP 工艺之后,晶圆表面上会观察到各种污染物,并且由于它们对器件性能和可靠性具有最直接的影响,因此它们成为许多代快速减小的特征尺寸中最关键的良率降低因素。本书章节提供了 (1) CMP 耗材引起的污染物,例如残留颗粒、表面残留物、有机残留物、焊盘碎片和金属杂质、焊盘污染、水印等,(2) CMP 后清洁过程中刷子引起的交叉污染,(3) 去除这些污染物的 CMP 后清洁。对各种类型的 CMP 污染物的形成及其特性的基本了解将极大地有利于下一代 CMP 浆料和 CMP 后清洁解决方案的开发。
摘要。在金属材料的定向能量沉积 (DED) 工艺中,线激光增材制造 (WLAM) 的特点是使用激光束熔化金属线并产生焊珠。重叠焊珠的连续沉积产生体积以获得零件。因此,控制焊珠的几何形状对于增材制造工艺至关重要。一些研究工作已经研究了这些几何形状以及主要制造参数对其尺寸的影响,但很少有研究进料方向或线角度的影响。此外,所有关于线角度的研究都是在横向进料和恒定激光方向下进行的。本文重点研究了同轴线进料的沉积头方向对焊珠几何形状的影响,其中有 3 束激光。以相对于水平基板的不同方向进行实验,并使用光学仪器测量外部轮廓,以提取平均轮廓和特征尺寸。结果表明,头部绕其轴线旋转和横向倾斜会影响焊珠的高度、宽度和不对称性。
摘要:本研究探索了EEG信号中突出的信号,并提出了一种基于EEG信号识别情绪体验和心理状态的有效方法。首先,使用PCA将数据的维度从2K和1K降低到10和15,同时提高了性能。然后,针对构建基于EEG的识别方法的高质量训练数据不足的问题,提出了一种多生成器条件GAN,通过使用不同的生成器来生成覆盖实际数据更完整分布的高质量人工数据。最后,为了进行分类,引入了一种新的混合LSTM-SVM模型。所提出的混合网络在EEG情绪状态分类中获得了99.43%的整体准确率,在识别心理状态方面表现出色,准确率达到99.27%。所介绍的方法成功地结合了机器学习的两个突出目标:高精度和小特征尺寸,并展示了在未来分类任务中利用的巨大潜力。