我们将介绍一种新的芯片优先 FOWLP 替代方案,该替代方案可满足大量需要 FOWLP 等封装技术的应用的需求。这种新封装已在 ASE 投入生产一年多,并使用“芯片最后”方法来解决增加可用互连焊盘面积的问题。已用铜柱 (Cu) 凸块凸起的芯片被批量回流到低成本无芯基板上,然后进行包覆成型,该包覆成型也用作芯片底部填充。Cu 柱允许以 50 µm 或更小的间距直接连接到芯片焊盘,从而无需在芯片上形成 RDL。使用嵌入式迹线允许细线和间距低至 15µm 或更小,并直接键合到裸铜上。Cu 柱键合到铜迹线的一侧,焊球或 LGA 焊盘直接位于铜的另一侧。这使得基板实际上只与走线中使用的铜一样厚,并使最终封装的厚度达到 400µm。由于这使用现有的大批量封装基础设施,因此可以轻松实现更复杂的组装,包括多个芯片、包含无源元件和 3D 结构。我们将此封装结构指定为“扇出芯片后封装 (FOCLP)”对于高端应用,我们将展示使用高密度基板工艺用于要求更高的芯片后扇出封装的能力关键词芯片先、芯片后、扇出、晶圆级封装
本文介绍了一种新型超大面积集成电路 (ELAIC) 解决方案(我们称之为“巨型芯片”),适用于将不同类型的多个芯片(例如,内存、专用集成电路 [ASIC]、中央处理器 [CPU]、图形处理单元 [GPU]、电源调节)组合到通用互连平台上的单个封装中。巨型芯片方法有助于重新构建异构芯片平铺,以开发具有所需电路密度和性能的高度复杂系统。本文重点介绍了最近关于大面积超导集成电路连接多个单独芯片的研究,特别关注了在单个芯片之间形成的高密度电互连的处理。我们重新制造了各种巨型芯片组件,并使用多种技术(例如扫描电子显微镜 (SEM)、光学显微镜、共聚焦显微镜、X 射线)对其进行了表征,以研究集成质量、最小特征尺寸、硅含量、芯片间间距和间隙填充。二氧化硅、苯并环丁烯 (BCB)、环氧树脂、聚酰亚胺和硅基电介质用于间隙填充、通孔形成和重分布层 (RDL)。对于巨型芯片方法,通过减少芯片间 (D2D) 间隙和增加硅含量来提高热稳定性,从而使组装人员能够缓解不同基板/模块集成方案的热膨胀系数 (CTE) 不匹配的问题,这对于实现从回流到室温甚至低温操作的宽温度范围稳定性非常重要。 Megachip 技术有助于实现更节省空间的设计,并可容纳大多数异构芯片,而不会影响稳定性或引入 CTE 不匹配或翘曲。各种异构芯片
D 集成是先进封装和异构集成中的关键技术——它有助于系统级性能扩展。虽然封装的发展引入了 3D 集成,从封装系统发展到堆叠集成电路 (IC) 和 3D 片上系统,但该行业目前正在见证另一个重要转折点:背面供电网络 (BSPDN)。在传统的扩展方法中,信号和供电共存于晶圆的正面。然而,对电力(尤其是供电)日益增长的需求,越来越限制了实现可扩展解决方案的能力。高效的晶体管扩展对于实现更高的晶体管密度至关重要,这需要按比例扩展供电网络。然而,这遇到了巨大的 IR 压降挑战,导致晶体管性能受损。此外,信号和电源的互连设计变得高度相互依赖,构成了供电布线过程的很大一部分(至少 20%)。此外,随着扩展到下一个节点,功率密度会迅速增加。行业共识是通过实施 BSPDN 来分离信号和电源。这涉及隔离晶圆正面的信号网络,并利用晶圆对晶圆键合来高效地访问晶体管背面以进行电源分配和管理。主要优势包括更宽的电源线和更低的 IR 压降、更均匀的电压分布,以及最重要的,更多的设计空间,从而进一步缩小标准单元高度。BSPDN 消除了在晶圆正面共享信号和电源线之间互连资源的需要。顾名思义,背面供电将电源重新定位到背面
但是,没有逻辑元素,此类系统的编码功能不足以编程任意算法。尽管在十年前的液滴的压力调节流中显示了单个逻辑操作,但事实证明,15,16,24的进一步整合被证明是困难的,抑制了具有非平凡功能的系统的创建。先进的内置控制仍然是微流体学的最重要,最开放的问题之一,从而阻碍了与实验室芯片概念一致的自主和便携式设备的开发。在这里,我们解决了这个问题,并提出了一个液滴逻辑平台,以构建具有多个内部状态的顺序逻辑单元。我们使用的水滴不弄湿通道壁,被油包围为潮湿通道壁的连续相(CP)。大于通道横截面大的液滴在壁之间挤压。这个特殊的环境将液滴的高度限制在毛细血管上主导重力的尺寸,从而使后者可忽略不计。因此,毛细血管最小化表面积,形成带有圆形末端的细长塞子液滴。25界面曲率引入了毛细管压力差P L,该毛细血管差p l跨界面维持,并由年轻 - 拉普拉斯方程描述,该液滴由宽度W和高度H的矩形通道限制为液滴,并且表面张力γ可以估计为P L =γ(2 H - 1-1-2 W - 1-2 W - 1)。在这里,我们假设液滴的末端的形状分别由Radii w /2和H /2的相对壁之间的圆圈开处方。26P L对管道的局部尺寸的依赖性意味着将液滴转移到更狭窄的区域会增加液滴内部的压力。因此,通道管腔的更改可用于为液滴建立毛细管井。
血管内连接。[34] 血管内神经调节是一种新兴技术,代表了介入神经学和神经工程的综合。典型的血管内神经接口是一种支架电极阵列,可通过经皮导管静脉造影植入上矢状窦,并通过经静脉导线将信号传输到胸部皮下的接收器。鉴于脑血管与许多重要的大脑区域距离很近,脑血管系统是神经接口的一个有前途的管道。虽然以前从未将经静脉导线植入人脑,但可以从心脏电疗设备的文献中吸取有关经静脉导线的安全性和设计特征的经验教训。颅内静脉系统是神经调节设备的一个有前途的领域。正在进行的 SWITCH 试验将在 5 名患者中测试支架电极阵列的可行性和安全性,随访期为 12 个月。[28,34]