摘要:基于流的架构最近被证明是用于在晶格上正规的有效字符串理论的数值模拟的有效工具,否则无法通过标准的Monte Carlo方法进行有效采样。在这项工作中,我们使用随机化流动,这是一种基于非平衡蒙特卡洛模拟的最先进的深度学习结构,以研究不同的有效弦模型。通过与Nambu-Goto模型的精确结果进行比较测试了这种方法的可靠性后,我们讨论了可观察到的结果,这些结果在分析方面具有挑战性,例如字符串的宽度和通量密度的形状。此外,我们对有效的弦乐理论进行了一项新的数值研究,其术语超出了Nambu-Got的作用,其中包括对它们对晶格量规理论的重要性的更广泛讨论。这些发现的组合可以定量描述不同晶格理论中限制机制的细节。这项工作中介绍的结果建立了基于流程的采样器对有效字符串理论的可靠性和可行性,并为更复杂模型的未来应用铺平了道路。
图稀疏化是大量算法的基础,从切割问题的近似算法到图拉普拉斯算子的线性系统求解器。在其最强形式中,“谱稀疏化”将边数减少到节点数的近似线性,同时近似地保留图的切割和谱结构。在这项工作中,我们展示了谱稀疏化及其许多应用的多项式量子加速。具体而言,我们给出了一种量子算法,给定一个具有 n 个节点和 m 条边的加权图,在亚线性时间内输出 ϵ -谱稀疏器的经典描述 e O ( √ mn/ϵ )。这与最佳经典复杂度 e O ( m ) 形成对比。我们还证明我们的量子算法在多对数因子范围内是最优的。该算法建立在一系列关于稀疏化、图扩展器、最短路径量子算法和 k 向独立随机字符串的有效构造方面的现有成果之上。我们的算法意味着解决拉普拉斯系统和近似一系列切割问题(例如最小切割和最稀疏切割)的量子加速。
数字电路和系统的高可靠性得益于多种方法。这些方法确保设计在规定的条件下和预计的使用寿命内发挥其功能。它们涵盖了与电子产品的制造和现场运行相关的不同方面。例如,洁净室控制杂质,工业控制系统实现生产一致性;封装前后的老化和测试确保在对电路施加应力后检测到设计弱点和制造缺陷。在将半导体推向市场之前,所有这些方法都是必要的,但它们并非万无一失。尽管小型化提供了许多优势,但每个新的 CMOS 节点都面临可靠性问题,因为这一趋势正在迅速接近操作和制造的物理极限 [1]。数字系统在其使用寿命的三个阶段可能会出现故障,如图 1 中的浴盆曲线所示 [39]。早期故障被称为早期死亡率;工作寿命期间发生随机故障,磨损故障
随机近似是一类算法,这些算法迭代,递增和随机更新,包括,例如,包括随机梯度下降和时间差学习。分析随机近似算法的一个基本挑战是建立其稳定性,即表明随机矢量迭代几乎肯定是有限的。在本文中,我们将著名的Borkar-Meyn定理从Martingale不同的噪声设定设置扩展到Markovian噪声设置,从而极大地提高了其在强化学习方面的适用性,尤其是在那些具有线性功能近似近似和资格率痕迹的O效性强化学习算法中。我们分析的核心是一些函数的变化变化速率的降低,这两种形式的强大定律和迭代对数定律的形式都暗示。关键字:随机近似,增强学习,稳定性,几乎确定的收敛性,资格跟踪
完全同态加密(FHE)是在加密数据上执行计算的强大工具。Cheon-Kim-Kim-Song(CKKS)方案是近似FHE的实例化,对于具有真实和复数的机器学习应用程序特别有效。al-尽管CKK具有明确的效率优势,但混乱始终围绕着准确描述图书馆中的应用,并安全地实例化了这些问题的计划,尤其是在Li和Micciancio(Eurocrypt'21)的关键恢复攻击之后,用于IND-CPA D设置。目前在IND-CPA D的应用程序不合时宜的,通用的定义以及软件库中CKK的高效,特定于应用程序的实例之间存在差距,这导致了Guo等人的最新攻击。(USENIX SECurity'24)。要缩小此差距,我们介绍了应用程序意识到的同构加密(AAHE)的概念,并设计了相关的安全性定义。该模型更紧密地与实践中的方案实施和使用的方式更加紧密,同时还可以识别和解决流行库中潜在的漏洞。然后,我们提供了一种应用程序规范语言(ASL),并制定指南,以实现AAHE模型,以实现CKKS实际应用的IND-CPA D安全性。我们在OpenFhe库中提出了ASL的概念证明实现,以显示Guo等人的攻击方式。可以反驳。更重要的是,我们表明我们的新模型和ASL可用于确切方案的安全有效实例化,并应对Cheon等人最近的IND-CPA D攻击。(CCS'24)和Checri等。(加密24)。
摘要 — 在过去十年中,近似计算 (AxC) 已被研究作为一种可能的替代计算范式。它已被用于降低传统容错方案(如三重模块冗余 (TMR))的开销成本。最近的提议之一是四重近似模块冗余 (QAMR) 的概念。QAMR 降低了相对于传统 TMR 结构的开销成本,同时保证了相同的容错能力。在本文中,我们提出了一种新的近似技术来实现 QAMR,并进行了设计空间探索 (DSE) 以找到 QAMR 帕累托最优实现。此外,我们为所提出的架构提供了一个新的多数表决器的设计。实验结果表明,对于 FPGA 和 ASIC 技术,分别有 85.4% 和 97% 的电路可以找到与 TMR 对应物相比实现面积和/或延迟增益的 QAMR 变体。索引词 — 容错;纠错;三重模块冗余;TMR;近似计算;四重近似模块冗余;QAMR;数字电路;近似计算
摘要 — 在本文中,我们建议使用模拟电路实现 S 型函数,该函数将用作多层感知器 (MLP) 网络神经元的激活函数,以及其近似导数。文献中已经提出了几种实现方法,特别是 Lu 等人 (2000) 的实现方法,他们提供了采用 1.2 µ m 技术实现的可配置简单电路。在本文中,我们展示了基于 Lu 等人的 S 型函数电路设计,使用 65 nm 技术以降低能耗和电路面积。该设计基于对电路的深入理论分析,并通过电路级模拟进行验证。本文的主要贡献是修改电路的拓扑结构以满足电路所需的非线性响应以及提取所得电路的直流功耗。索引词——激活函数、模拟 CMOS 电路、近似导数、反向传播、多层感知器、S 型函数。
本文基于与归一化采样的高斯核或综合高斯内核的卷积,对高斯衍生物的两种混合离散方法的性质进行了分析。研究这些离散方法的动机是,在相同规模水平上需要多个阶的多个空间衍生物时,与基于更直接的衍生近似值相比,它们基于基于更直接的衍生近似值而具有更高的效率相比,它们基于具有较高的衍生性速率,以示例性衍生性衍生性不能衍生性不能进行。我们根据定量绩效指标来表征这些混合离散方法的特性,同意它们所暗示的空间平滑量,以及它们从量表 - 流动特征探测器的相对一致性以及从自动量表选择中获得的量表的相对一致性,从尺度上的量表与尺度相关的量度相差很大,该尺度的范围与尺度的相差相差,该尺度的尺度是有效的。理论以及不同类型的离散方法之间。在设计和解释以非常精细的水平运行的规模空间算法的实验结果时,提出的结果旨在作为指导。
摘要 - 软马克斯函数用作放置在神经网络输出层中的激活函数。它允许提取输出类的概率,同时向模型引入非线性。在低端FPGA领域,深神经网络(DNN)的实现需要探索优化技术,以提高计算效率和硬件资源消耗。这项工作探讨了使用Taylor和Pad'E近似方法以及带有查找表(LUTS)的插值方法来促进软效果的近似计算技术。引入近似值旨在减少所需的执行时间,同时降低SoftMax函数产生的结果的精度。使用均方根误差(RMSE)评估每个实现,以进行准确评估,并通过测量执行时间来验证个人绩效。从我们的评估中,使用LUTS的二次插值实现了最低的错误,但是在性能方面,泰勒和垫子近似显示了更好的执行时间,这突出了数值准确性和功耗之间的现有设计权衡。索引项 - 评估计算,高级合成,推理算法,神经网络压缩,多层感知器。
磁共振成像 (MRI) 是一种多功能医学成像方式,可在软组织之间提供出色的对比度。可以调整采集参数,以使这种对比度对各种组织特性敏感,例如质子密度以及纵向和横向弛豫时间(分别为 T 1 和 T 2 )。MRI 采集包括使用各种电磁脉冲反复激发人体内质子,并从图像中获取少量傅里叶样本。然后通过逆傅里叶变换运算将频域中的观测值重铸到空间域。典型的 MRI 数据包括任意方向的 2D 或 3D 图像。后者具有两个平面内空间维度和切片方向的第三个空间维度,因此它们可以看作张量。然而,MRI 的采集时间相对较慢,通常需要几分钟的时间。这种技术限制会阻碍 3D 高分辨率图像的采集。为了避免这个缺点,超分辨率技术已被证明在许多情况下是有效的 [1],[2],[3]。它们包括从一个或多个低分辨率观测中恢复 3D 高分辨率图像。最近,有人提出使用深度学习从单个低分辨率观测中恢复高分辨率图像 [4],[5]。然而,对于小病变,最好考虑多个观测以用于图像的诊断。这些观测可以合并到融合模型中,从而提供比单独处理更多的信息 [6]。使用融合范式避免了依赖外部患者数据库来获取先验信息。因此,在剩下的文章中,我们将重点关注从多个观测中进行超分辨率重建的问题,也称为多帧超分辨率。