本文研究了多个气候模型误差之间的互相关。我们构建了一个贝叶斯分层模型,该模型解释了各个模型的空间依赖性以及跨不同气候模型的跨构成。我们的方法允许具有不可分割的和非稳定的交叉协方差结构。我们还提出了一种协方差近似方法,以促进非常大的多元空间数据集建模和分析中的计算。协方差近似组成的两个部分:一个减少的秩部分以捕获大规模的空间依赖性,以及稀疏的协方差矩阵,以纠正由降低级别近似所引起的小规模依赖误差。我们特别注意近似值的第二部分具有块对基结构。模型拟合和预测的仿真结果表明,在预测过程近似和独立块分析中,提出的近似值的取代。然后,我们将综合方法应用于多个气候模型错误的联合统计建模。
主要关键词