神经形态计算中的新兴材料
机构名称:
¥ 1.0

五十多年来,冯·诺依曼体系结构的灵活性(其中来自离散内存单元的数据作为操作和操作数到达专用计算单元)推动了系统性能的指数级提升。这些计算系统需要在执行计算任务期间高速来回传送大量数据。但是,随着设备缩放因功率和电压考虑而放缓,在内存和计算单元之间所谓的“冯·诺依曼瓶颈”上传输数据所花费的时间和能量已成为问题。这些性能瓶颈和明显的面积/功率效率低下对于以数据为中心的应用尤其不可避免,例如实时图像识别和自然语言处理,其中最先进的冯·诺依曼系统努力匹配普通人的表现。我们正处于人工智能 (AI) 和认知计算革命的风口浪尖,算法的进步使得深度神经网络 (DNN) 在模式识别、游戏、机器翻译等许多任务上接近甚至超越人类的表现。

神经形态计算中的新兴材料

神经形态计算中的新兴材料PDF文件第1页

神经形态计算中的新兴材料PDF文件第2页

神经形态计算中的新兴材料PDF文件第3页

神经形态计算中的新兴材料PDF文件第4页