神经形态计算是一种非冯·诺依曼计算范式,通过模拟人脑进行计算。神经形态系统非常节能,耗电量比 CPU 和 GPU 少数千倍。它们有可能在未来推动自动驾驶汽车、边缘计算和物联网等关键用例。因此,它们被视为未来计算领域不可或缺的一部分。神经形态系统主要用于基于脉冲的机器学习应用,尽管图论、微分方程和基于脉冲的模拟中也有一些非机器学习应用。这些应用表明神经形态计算可能具有通用计算能力。然而,神经形态计算的通用可计算性尚未建立。在这项工作中,我们证明了神经形态计算是图灵完备的,因此具有通用计算能力。具体来说,我们提出了一种神经形态计算模型,其中只有两个神经元参数(阈值和泄漏)和两个突触参数(权重和延迟)。我们设计了神经形态电路来计算所有 µ 递归函数(即常数、后继和投影函数)和所有 µ 递归运算符(即组合、原始递归和最小化运算符)。鉴于 µ 递归函数和运算符正是可以使用图灵机计算的函数和运算符,这项工作确立了神经形态计算的图灵完备性。