通过功能性磁共振成像 (fMRI) 或脑电图 (EEG) 这两种互补方式测量大脑活动,是神经反馈 (NF) 机制背景下大脑康复方案的基本解决方案。虽然 NF-EEG(根据 EEG 信号计算出的实时神经反馈分数)已经被探索了很长时间,但 NF-fMRI(根据 fMRI 信号计算出的实时神经反馈分数)出现得更晚,并且提供了更可靠的结果和更具体的大脑训练。同时使用 fMRI 和 EEG 进行双模态神经反馈疗程(NF-EEG-fMRI,根据 fMRI 和 EEG 计算出的实时神经反馈分数)对于制定大脑康复方案非常有前景。然而,fMRI 对患者来说很麻烦,也更累。本文的原创贡献涉及仅从 EEG 记录预测双模态 NF 分数,使用训练阶段,其中 EEG 信号以及 NF-EEG 和 NF-fMRI 分数都可用。我们提出了一个稀疏回归模型,该模型能够利用 EEG 仅预测运动想象任务中的 NF-fMRI 或 NF-EEG-fMRI。我们比较了从所提模型得出的不同 NF 预测因子。我们发现,与经典 NF-EEG 分数相比,从 EEG 信号预测 NF-fMRI 分数可以为 NF-EEG 分数添加信息,并显著提高与双模 NF 会话的相关性。