由薄膜组成的小型电源(如全固态微电池)已引起人们的关注,以确保可穿戴微电子和物联网 (IoT) 设备的自主性[1-3]。然而,这些刚性元件实现的机械变形非常有限[4-8],使它们不适合某些应用,如软电子、生物医学贴片,技术挑战在于设计出具有高电化学性能和先进机械性能的储能装置,以防止裂纹引起的变形和随后的电接触损失。因此,已经提出了几种开发柔性微电池的方法来,例如纸状结构[9-12]、海绵/多孔结构[13-15]和纺织电池[16-20]。由于这些设计的可扩展能力仍然很差,据报道,其他配置可以增加微电池的可扩展性,包括纤维形[21]、3D 多孔海绵[22、23]、折纸[24]、波浪形[25]、拱形电极[26]、蜂窝结构[27]和由螺旋弹簧形成的蛇形[28]。为了防止在拉伸应变下出现开裂问题,蛇形金属互连体被用于在薄膜电极之间建立可拉伸的电接触[29]。然而,对于这种桥岛电池设计,大部分表面需要用于连接,只有 28% 的基底被活性材料占据。
主要关键词