Loading...
机构名称:
¥ 10.0

航空公司每天都在努力安排机组人员、航班和飞机。尾部分配是将单架飞机分配给一组航班的问题,同时确保多重约束并旨在最小化目标函数,比如运营成本。鉴于所涉及的大量可能性和约束,这个问题在过去十年中一直是一个研究案例。许多使用经典计算的解决方案已经出现,但在性能上受到限制。量子退火(QA)是一种使用量子力学在能量景观上寻找全局最小能级的启发式技术。由于其特性,它在解决一些复杂的优化问题方面已被证明具有明显的优势,是一种很有前途的技术,可应用于多个领域。在本研究中,尾部分配问题被设置为二次无约束二元优化(QUBO)模型,使用两种不同的技术,并使用一个经典求解器和两个混合求解器进行求解。测试基于从真实世界数据中提取的数据,分析了实施在时间、可扩展性和所获解决方案的质量(即最低运营成本)方面的性能。我们得出的结论是,使用库来建模问题以及考虑单个航班而不是将它们预先聚合成字符串可能会成为可扩展性的瓶颈。此外,我们发现,与模拟退火 (SA) 等经典启发式算法相比,使用混合求解器之一获得此问题更好解决方案的可能性更高。这些发现可以作为进一步研究的基础。

将量子退火应用于尾部分配问题

将量子退火应用于尾部分配问题PDF文件第1页

将量子退火应用于尾部分配问题PDF文件第2页

将量子退火应用于尾部分配问题PDF文件第3页

将量子退火应用于尾部分配问题PDF文件第4页

将量子退火应用于尾部分配问题PDF文件第5页

相关文件推荐

1900 年
¥1.0
2024 年
¥1.0