Loading...
机构名称:
¥ 1.0

对于 p ≥ 1,令 ℓ p 表示具有有限 p 阶范数的实值序列 x ∈ RN 的空间 ∥ x ∥ p = ( ∑ i | xi | p ) 1/ p 。对于任何 n ≥ 1 和任何 x 1 , ... , xn ∈ ℓ 2,存在 y 1 , ... , yn ∈ ℓ n 2 ,使得对于所有 i , j ∈{ 1, ... , n } ,∥ xi − xj ∥ 2 = ∥ yi − yj ∥ 2 。这直接源于希尔伯特空间的任何 n 维子空间都与 ℓ n 2 等距。事实上,甚至存在这样的 y 1 , ... , yn ∈ ℓ n 2通过考虑 n − 1 个向量 x 2 − x 1 , ... , xn − x 1 ,我们可以得到 ℓ n − 1 2 中的任意 n 个点都可以等距嵌入到 ℓ n − 1 2 中。通过考虑 n 点集 { 0, e 1 , ... , en − 1 } ⊆ R n − 1 ,其中 ei 是第 i 个标准基向量,不难看出维度 n − 1 是等距嵌入的最佳维度。Johnson-Lindenstrauss 引理 [JL84] 建立了一个惊人的事实,即如果我们允许少量误差 δ > 0 ,那么更好的“降维”是可能的。也就是说,对于任何 n ≥ 1 ,任何点 x 1 , ... , en − 1 } , xn ∈ ℓ 2 , 且任意 0 < δ < 1 , 存在 n 个点 y 1 , ... , yn ∈ ℓ d 2 , d = O ( δ − 2 log n ) , 并且对于所有的 i , j ∈{ 1, ... , n } ,

核范数中降维的界限

核范数中降维的界限PDF文件第1页

核范数中降维的界限PDF文件第2页

核范数中降维的界限PDF文件第3页

核范数中降维的界限PDF文件第4页

核范数中降维的界限PDF文件第5页

相关文件推荐

2024 年
¥2.0
2020 年
¥3.0
2024 年
¥1.0
2020 年
¥3.0