Loading...
机构名称:
¥ 1.0

我们生活在一个临床和生物数据空前丰富的时代,这些数据包括电子健康记录、可穿戴传感器、生物医学成像和多组学。收集这些数据的规模、复杂性和速度要求统计学和计算机科学采用创新方法,利用人工智能 (AI) 的快速发展,有效地识别疾病过程的可行见解。现在,研究人员和临床心脏病专家必须对人工智能的优势、应用和局限性有基本的了解。在这种情况下,人工智能是指一组计算概念,可以概括为机器概括学习的能力,以便有效地自主完成复杂任务。机器学习 (ML) 通过使用算法来提高任务性能,而无需明确编程来实现这一点,并且可以大致分为监督方法和无监督方法。在监督学习中,成对的输入和输出变量之间的映射经过迭代优化,以用于回归和分类任务。在无监督学习中,只有输入数据可用,并且使用算法来查找固有的聚类或关联。近年来,机器学习已由深度学习 (DL) 主导,这是一种使用多层神经网络逐步获得复杂数据更抽象表示的方法。图 1 提供了 AI 领域的高级示意图。DL 算法由三种类型的层组成:输入层、隐藏层和输出层。网络架构和初始训练变量(超参数)是预先确定的。每个神经元都有一个激活函数,它定义给定集合的输出

人工智能与心脏病专家:2020 年你需要了解的内容

人工智能与心脏病专家:2020 年你需要了解的内容PDF文件第1页

人工智能与心脏病专家:2020 年你需要了解的内容PDF文件第2页

相关文件推荐