Loading...
机构名称:
¥ 1.0

在过去的十年中,人工智能 (AI) 和放射组学等数据科学技术在放射学研究中强势崛起。放射组学是指从医学图像中(自动)提取大量定量特征 [1]。典型的放射组学工作流程涉及图像采集和分割以及特征提取和优先级排序/缩减,为其最终目标做准备,即预测建模 [2]。在这最后一步,放射组学和人工智能通常交织在一起,建立互利共生关系。近年来,医学成像领域关于放射组学和人工智能应用的出版物数量不断增加,方法也日益完善 [3,4]。最佳实践白皮书的制定和预测建模出版物质量标准(如 TRIPODS [5] 或 CLAIM [6] 标准)大大促进了这种定性收益。因此,在最近的出版物中越来越多地观察到提高预测模型普遍性的相关方法学方法,例如,准确组成具有代表性和无偏数据集,避免数据泄露,结合(嵌套)交叉验证方法进行模型开发,特别是在小数据集上,或使用独立的外部测试样本。在这方面,Song 等人 [7] 在最新一期的《欧洲放射学》上发表的关于预测颅内出血功能结果的临床放射组学列线图的工作只是一般趋势的一个例子。然而,与预测模型在医学成像研究中的利用率和重要性的提高相比,这些技术尚未在临床

预测模型和人工智能在临床中的应用

预测模型和人工智能在临床中的应用PDF文件第1页

预测模型和人工智能在临床中的应用PDF文件第2页

相关文件推荐

2024 年
¥43.0
2020 年
¥1.0
2021 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0