Loading...
机构名称:
¥ 1.0

摘要 — 随着大规模数据集的日益普及,以及经济实惠的存储和计算能力的普及,人工智能所消耗的能源正成为一个日益令人担忧的问题。为了解决这个问题,近年来,研究集中于展示如何通过调整模型训练策略来提高人工智能的能源效率。然而,对数据集的修改如何影响人工智能的能耗仍然是一个悬而未决的问题。为了填补这一空白,在这项探索性研究中,我们评估了是否可以利用以数据为中心的方法来提高人工智能的能源效率。为了实现我们的目标,我们进行了一项实证实验,通过考虑 6 种不同的人工智能算法、一个包含 5,574 个数据点的数据集和两个数据集修改(数据点数量和特征数量)来执行。我们的结果表明,通过专门对数据集进行修改,可以大幅降低能耗(高达 92.16%),而这通常以准确度几乎不会下降甚至不会下降为代价。作为额外的介绍性结果,我们展示了如何通过专门改变所使用的算法,实现高达两个数量级的节能。总之,这项探索性调查从经验上证明了应用以数据为中心的技术对提高人工智能能源效率的重要性。我们的研究结果呼吁制定以数据为中心的技术为重点的研究议程,以进一步实现绿色人工智能的民主化。索引术语 — 能源效率、人工智能、绿色人工智能、以数据为中心、实证实验

以数据为中心的绿色人工智能:一项探索性实证研究

以数据为中心的绿色人工智能:一项探索性实证研究PDF文件第1页

以数据为中心的绿色人工智能:一项探索性实证研究PDF文件第2页

以数据为中心的绿色人工智能:一项探索性实证研究PDF文件第3页

以数据为中心的绿色人工智能:一项探索性实证研究PDF文件第4页

以数据为中心的绿色人工智能:一项探索性实证研究PDF文件第5页

相关文件推荐