与人工智能社区的许多成员一样,我着迷地关注着符号人工智能和联结人工智能之间正在进行的讨论。符号人工智能认为,在推理和学习中使用知识对于产生智能行为至关重要,而联结人工智能则假定,从数据中学习关联(几乎不需要或完全不需要先验知识)对于理解行为至关重要。最近这两种人工智能范式之间的争论是由本世纪初联结人工智能的进步引发的,这些进步具有重要的应用价值。联结主义在面对大规模数据时所取得的技术成功,使其成为人工智能的主导范式。过去十年,这两种学派之间的对话通过学术文章(例如,LeCun、Bengio 和 Hinton,2015 年)、辩论(人工智能辩论,2017 年;人工智能辩论,2019 年)和社交媒体展开——其中社交媒体有时会引发尖锐的评论。我之所以对这场辩论如此着迷,是因为人工智能的主要问题非常重要:智能本身的性质。然而,我也发现这场辩论有点令人沮丧。原因如下。首先,我发现“符号人工智能”和“联结主义人工智能”这两个词组具有误导性。符号学派致力于知识及其在推理和学习中的应用(仅使用适度的输入数据),而不是符号本身:符号通常只代表知识抽象。同样,联结主义阵营的忠诚实际上是在几乎没有或完全没有先验知识的情况下从数据中学习关联,通常需要大规模数据。从认知科学的角度来看,符号人工智能与理性主义心智学派非常一致,后者强调
主要关键词