Loading...
机构名称:
¥ 1.0

我们设计了一种陈述性记忆机制,它尽可能与神经科学和认知科学的发现保持一致,同时不违反证明合理性的数学逻辑要求。其主要特点如下。 寄存器和内容可寻址存储器中存储的值仅限于已证明的命题。由于信息处理的最小单位(一个已被证明的命题)有自足的意义,记忆管理(比如忘记不必要的知识)就变得更容易。另一个优点是,即使在合成过程中执行不完整的程序,数据结构也不太可能崩溃。由于程序执行的顺序也将变得更加灵活,因此在时间允许的情况下规划未来的行动将变得更加容易。 每次进行推理时,都会自动将已证明的命题添加到已证明命题集合中,即将信息写入联想记忆机制。目的是减轻程序负担,提高程序综合的性能。 我们计划提供两种类型的陈述性知识回忆:自动回忆和主动回忆。 (目前仅实现了主动回忆。)事件回忆并不涉及重现某一特定时刻大脑的整个内部状态,而是仅重现一个已证实的命题。这使得信息处理能够实现,例如从一个命题推断另一个命题。 回忆陈述性知识的机制也被设计成不破坏证明的合理性(第 3.7 节)。 陈述性知识分为证实命题(情景记忆)和语义记忆。 Pro5Lang 中的语义记忆是多个已证明命题的压缩和抽象版本,旨在使用 [5]2 中描述的方法通过归纳推理来获取。 (然而,在当前的实现中,语义记忆也是从一开始就手动提供的。)由于存在过度概括和获取不正确的语义记忆的可能性,因此有必要提供单独的机制来选择和忘记不正确的语义记忆。这将在第 5 节中讨论。 由于记忆空间有限,即使正确的陈述性知识也会被适当地遗忘。即使不时随机选择和删除已证明命题集合中的元素,图 2 和 Pro5Lang 中的算法也不会失去健全性。然而,证明可能需要更长的时间并且可能变得越来越难以完成。为了避免降低证明的效率,需要使用一些启发式方法来选择需要遗忘的知识。 (目前实施中尚未采取此类措施。)

通用人工智能程序合成语言Pro5Lang的情景记忆机制

通用人工智能程序合成语言Pro5Lang的情景记忆机制PDF文件第1页

通用人工智能程序合成语言Pro5Lang的情景记忆机制PDF文件第2页

通用人工智能程序合成语言Pro5Lang的情景记忆机制PDF文件第3页

通用人工智能程序合成语言Pro5Lang的情景记忆机制PDF文件第4页

通用人工智能程序合成语言Pro5Lang的情景记忆机制PDF文件第5页

相关文件推荐