摘要:新一代可编程网络允许部署机制来有效控制动态带宽分配,并确保延迟或丢失敏感的物联网 (IoT) 服务的关键性能指标 (KPI) 方面的服务质量 (QoS)。为了在软件定义网络 (SDN) 中实现灵活、动态和自动化的网络资源管理,人工智能 (AI) 算法可以提供有效的解决方案。在本文中,我们提出了网络资源分配的解决方案,其中 AI 算法负责控制 SDN 中的基于意图的路由。本文重点研究了使用基于人工神经网络的深度 Q 学习方法在两个指定路径之间最佳切换意图的问题。所提出的算法是本文的主要创新之处。开发的网络应用仿真系统 (NAPES) 允许使用不同的模式测试 AI 解决方案,以评估所提解决方案的性能。对 AI 算法进行了训练,以最大化网络中的总吞吐量和有效的网络利用率。结果证实了应用人工智能方法解决下一代网络性能改善问题的有效性,以及 NAPES 流量生成器在物联网网络系统评估中实现高效经济和技术部署的实用性。
主要关键词