本文探讨了向由人工智能和人类工作者组成的群体动态分配任务的问题。目前,众包创建人工智能程序是一种常见的做法。为了将这类人工智能程序应用于一组任务,我们通常采取“全有或全无”的方法,等待人工智能足够好。然而,这种方法可能会阻止我们在过程完成之前利用人工智能提供的答案,也会阻止探索不同的人工智能候选者。因此,将创建的人工智能与其他人工智能和人工计算相结合,以获得更高效的人机团队并非易事。在本文中,我们提出了一种解决这些问题的方法,即采用“分而治之”的策略来评估人工智能工作者。在这里,只要最终结果满足给定的质量要求,分配给人类的任务数量最少,分配就是最优的。本文对所提出的方法进行了理论分析,并利用开放基准和真实数据集进行了大量的实验。结果表明,当人工智能难以满足整个任务集的质量要求时,该算法可以向人工智能分配比基线多得多的任务。它们还表明,它可以根据现有人工智能工作者的表现灵活地改变分配给多个人工智能工作者的任务数量。