可以通过观察相关参数的值/变化来识别特定事件。为此,从相应的紧急操作程序 (EOP) 中选择了大约 45 个 COIS 信号,用于识别 PHWR 中的 LOCA 和 MSLB 场景。使用 RELAP5[2] 和 CONTRAN[3] 热工水力代码生成了与反应堆堆芯和 PHT 有关的时间相关瞬态数据。文献中有许多线性和非线性模式识别技术[4]。然而,ANN 是解决涉及大量输入信号和输出事件的复杂问题的最广泛使用的机器学习技术之一。神经网络的一般特征是能够在经过充分训练后快速识别复杂系统的各种条件或状态。最终的 ANN 模型已与诊断系统集成,该系统提供有关瞬态变化的最合适信息,并协助操作员采取纠正措施以缓解事故状况。当前版本的诊断系统能够识别 220MWe PHWR 中的 33 种 LOCA 和 18 种 MSLB 场景。
主要关键词