机器学习的进步在公司之间和公司内部造成了“人工智能技能差距”。随着人工智能融入公司流程,我们将如何影响拥有和不拥有人工智能技能的员工之间的数字鸿沟尚不得而知。在本文中,我们询问管理者是否信任人工智能来预测后续事件,管理者的哪些特征与增加对人工智能预测的信任有关,以及可解释的人工智能 (XAI) 是否会影响用户对人工智能预测的信任。我们与一家大型银行合作,生成了人工智能预测,以确定贷款是否会延迟发放。我们将这些预测嵌入到仪表板中,在查看该工具之前和之后对 685 名分析师、经理和其他员工进行了调查,以确定哪些因素影响了员工对人工智能预测的信任。我们进一步随机分配了一些经理和分析师接受可解释的人工智能处理,该处理提供 Shapely 细分,解释为什么模型将他们的贷款归类为延迟以及模型性能指标。我们发现 i) XAI 与感知到的有用性更大但对机器学习预测的理解度较低相关; ii) 某些不愿使用人工智能的群体(尤其是高级管理人员和对人工智能不太熟悉的人)总体上更不愿意相信人工智能的预测;iii) 贷款复杂度越高,对机器学习预测的信任度就越高;iv) 有证据表明,不愿使用人工智能的群体对可预测人工智能的反应更强烈。这些结果表明,机器学习模型的设计将决定谁能从工作场所机器学习的进步中受益。
主要关键词