摘要 本文探讨了人工智能生成的图像中再现的意识形态,特别关注痴呆症的表现。利用文本到图像的人工智能模型 Stable Diffusion 1.4 版,我们对 171 张以“痴呆症”为文本提示生成的图像进行了多模态批判性话语分析。我们的分析旨在通过将这些图像与现有的痴呆症多模态表现进行比较,识别和情境化生成的图像中的视觉话语。除了观察到视觉多样性的普遍缺乏(过多的老年人和浅肤色的人)之外,我们还发现这些图像倾向于通过回收现有的、围绕该综合症的突出视觉话语来描绘痴呆症,包括对疾病的生物医学关注、失落的叙述和痴呆症作为“活着的死亡”。这些视觉话语与特定的符号选择相结合,促进了观看者和痴呆症患者之间的情感距离。总的来说,这项研究强调了人工智能生成的图像强化和放大有害刻板印象和偏见的可能性。这项研究不仅展示了此类意象的意识形态意义,以及因此需要通过(多模态)批判性话语分析家对其进行批判性审视,还强调了在人工智能设计和使用过程中需要考虑道德问题,包括开发更加多样化和包容性的训练数据集。
主要关键词