摘要 — 在需求工程 (RE) 领域,可解释人工智能 (XAI) 在使 AI 支持的系统与用户需求、社会期望和监管标准保持一致方面的重要性日益得到认可。总体而言,可解释性已成为影响系统质量的重要非功能性需求。然而,可解释性和性能之间的权衡挑战了可解释性的假定积极影响。如果满足可解释性的要求会导致系统性能下降,那么必须仔细考虑哪些质量方面优先以及如何在它们之间妥协。在本文中,我们批判性地研究了所谓的权衡。我们认为,最好以一种细致入微的方式来解决这个问题,将资源可用性、领域特征和风险考虑结合起来。通过为未来的研究和最佳实践奠定基础,这项工作旨在推动 AI 的 RE 领域的发展。索引词 — 人工智能、AI、可解释性、可解释人工智能、性能、非功能性需求、NFR、XAI、权衡分析、准确性
主要关键词