周期性是运动物体中经常发生的现象。寻找周期行为对于理解物体运动至关重要。然而,周期行为可能非常复杂,涉及多个交错的周期、部分时间跨度以及时空噪声和异常值。在本文中,我们解决了挖掘运动物体的周期行为的问题。它涉及两个子问题:如何检测复杂运动中的周期以及如何挖掘周期性运动行为。我们的主要假设是观察到的运动是由与某些参考位置相关的多个交错的周期行为产生的。基于此假设,我们提出了一个两阶段算法Periodica来解决这个问题。在第一阶段,提出参考点的概念来捕捉参考位置。通过参考点,可以使用结合傅里叶变换和自相关的方法来检索运动中的多个周期。在第二阶段,提出一个概率模型来表征周期行为。对于特定时期,通过层次聚类从部分运动序列中统计概括出周期性行为。对合成数据集和真实数据集的实证研究证明了我们方法的有效性。
主要关键词