阿尔茨海默病是一种神经退行性疾病,会逐渐丧失认知和神经功能,对人类生活产生负面影响,并且是不可逆转的。由于该疾病无法治愈,因此通过早期诊断减缓其进展至关重要。诊断阶段的延长会导致治疗延迟并增加认知和神经系统的损失。本研究的目的是利用机器学习方法根据脑电图(EEG)信号诊断阿尔茨海默病(AD),以尽量减少损失。在研究中,24 名 AD 患者和 24 名健康人的脑电图信号被分为 4 秒的时间段,重叠率为 50%。计算信号的独立成分分析(ICA)值,并根据ICA值从EEG通道中自动去除噪声。每个信号从时间域到谱域的转换都是采用Welch方法进行的。通过Welch频谱分析获得1~30Hz范围内的功率谱密度(PSD)信号,提取20个统计和频谱特征,并建立特征向量。利用Spearman相关系数检验各特征与标签的相关关系,并根据阈值选取9个特征构建新的特征向量。将获得的特征向量中70%作为训练,30%作为测试。采用 10 倍交叉验证对机器学习 (ML) 方法中的支持向量机 (SVM) 和 k-最近邻 (kNN) 方法进行训练和测试,不使用和使用主成分分析 (PCA)。根据准确度、敏感度、特异性、精确度和 F-Score 值对结果进行比较。通过对由20个特征组成的特征向量进行PCA分析,利用SVM取得了AD诊断的最佳准确率(96.59%)。关键词:EEG、阿尔茨海默病、机器学习、SVM、kNN。
主要关键词