Loading...
机构名称:
¥ 1.0

我们建立了一个机器学习模型,使用以无监督方式在随机生成的状态上训练的神经网络来检测三量子比特系统中的相关性。网络被迫识别可分离状态,并将相关状态检测为异常。令人惊讶的是,我们发现所提出的检测器在区分较弱形式的量子相关性(即量子不和谐)方面的表现比纠缠要好得多。事实上,即使在纠缠检测的最佳阈值下,它也倾向于严重高估纠缠状态集,而低估不和谐状态集的程度要小得多。为了说明被归类为量子相关的状态的性质,我们构建了一个包含各种类型状态的图表——纠缠、可分离、不和谐和非不和谐。我们发现,识别损失的接近零值可以高精度地再现非不和谐可分离状态的形状,尤其是考虑到该集合在图上的非平凡形状。网络架构经过精心设计:它保留了可分离性,并且其输出相对于量子比特排列是等变的。我们表明,架构的选择对于获得最高的检测准确率非常重要,比仅使用部分跟踪操作的基线模型要好得多。

数据驱动的量子相关性标准

数据驱动的量子相关性标准PDF文件第1页

数据驱动的量子相关性标准PDF文件第2页

数据驱动的量子相关性标准PDF文件第3页

数据驱动的量子相关性标准PDF文件第4页

数据驱动的量子相关性标准PDF文件第5页