量子计算机天生容易受到错误和干扰的影响。量子纠错是量子计算的一个重要方面。它是为了保护量子信息免受由于退相干和其他形式噪声引起的错误;参见 [8, 33] 等。量子纠错目前是一个开放的挑战。1996 年,Calderbank 和 Shor [6] 以及 Steane [27] 分别提出了一类量子码,主要以 CSS 码的名称为人所知,它由两个经典线性纠错码组合而成。此后,多篇文章研究了它们的构造,并使用已知的线性码系列获得量子码,例如 Reed-Solomon 和 BCH 码 [12, 18]、Reed-Muller 码 [25, 30] 和代数几何码 [14, 16, 17]。量子 CSS 码通常是通过将构造所需的两个经典码取为自正交码及其对偶来构造的。另一方面,从技术上讲,这种方法并不是构造所必须的,而且正如我们将在本文中讨论的那样,这种方法施加了很强的约束。最近,Rengaswamy 等人 [22, 23] 引入了一类 CSS 码,称为 CSS-T 码,专门用于通用容错量子计算。迄今为止,CSS-T 码的性质尚未得到充分探索。一个悬而未决的问题是关于 CSS-T 码族的存在,其速率和相对距离对于较大的块长度都是非零的。本文提供了一些部分答案。在介绍的其余部分,我们简要总结了本文的贡献,并向读者指出相关章节。在第 1 节中,我们提供了必要的背景材料,这也使我们有机会从经典编码理论的角度简明扼要地介绍量子纠错码。在第 2 节中,我们研究了 CSS 码的参数,并给出了产生具有足够大纠错能力的 CSS 码的代码对数量的下限。特别是,我们证明在较大的域上,
主要关键词