时间序列分类 (TSC) 包含两种设置:对整个序列进行分类或对分段子序列进行分类。分段 TSC 的原始时间序列通常包含多个类,每个类的持续时间各不相同 (MVD)。因此,MVD 的特性对分段 TSC 提出了独特的挑战,但在现有研究中却很大程度上被忽视了。具体而言,在 MVD 中要分类的连续实例 (段) 之间存在自然的时间依赖性。然而,主流 TSC 模型依赖于独立同分布 (iid) 的假设,专注于独立地对每个段进行建模。此外,具有不同专业知识的注释者可能会提供不一致的边界标签,导致无噪声 TSC 模型的性能不稳定。为了应对这些挑战,我们首先正式证明有价值的上下文信息可以增强分类实例的判别能力。利用 MVD 在数据和标签层面的上下文先验,我们提出了一种新颖的一致性学习框架 Con4m ,该框架有效地利用了更有利于区分分段 TSC 任务中连续片段的上下文信息,同时协调了不一致的边界标签以进行训练。在多个数据集上进行的大量实验验证了 Con4m 在处理 MVD 上的分段 TSC 任务方面的有效性。源代码可在 https://github.com/MrNobodyCali/Con4m 获得。
主要关键词