Shor算法是量子算法中最重要的一个,可以在多项式时间内以一定的成功概率对大整数进行因式分解,但在NISQ(Noisy Intermediate-scale Quantum)时代,Shor算法需要的量子比特数量难以承受。为了减少Shor算法所需的资源,本文首先提出了一种新的分布式相位估计算法,该算法不需要量子通信,与传统相位估计算法(非迭代版)相比,减少了单个节点的量子比特数。然后,我们应用该分布式相位估计算法,形成Shor算法的分布式寻阶算法。与传统Shor算法(非迭代版)相比,单个节点寻阶所需的最大量子比特数