摘要:锂离子电池组中不可避免的热梯度由于热量产生和耗散不均,这会影响电池老化。在本文中,建立了用于模拟实用热梯度条件的实验平台。实验结果表明高非线性电池降解程度很高。考虑到高度非线性,高度非平稳性和随时间变化的数据的极限学习机器(ELM),它具有良好的学习能力和拟合能力。在本文中提出了基于麻雀搜索算法(SSA)的电池寿命预测模型,以优化ELM网络的随机权重和偏置,并通过实验数据进行验证。结果表明,与传统的ELM和后传播神经网络相比,SSA优化的ELM的预测结果具有较低的平均绝对误差百分比和均方根误差,这表明SSA-ELM模型具有较高的预测准确性,并且具有更好的稳定性,并且具有高非线性程度的处理数据方面具有明显的优势。
主要关键词