Loading...
机构名称:
¥ 1.0

工业化和城市化的加速度将不可避免地导致HMS污染进入环境。尤其是在农业环境中,农业,施肥,灌溉和其他农业活动可能导致土壤中的HM浓度高,导致大多数HMS变得更加活跃,因此不可避免地会被农作物吸收(Dalcorso等,2013)。HMS由于其高毒性,隐藏性和团聚而成为作物影响最严重的污染物之一。hms可以通过抑制酶功能,破坏核酸结构并干扰植物营养素的摄取,从而对作物的生长,生物量和光合作用产生负面影响,从而对可持续食品产生构成威胁。此外,土壤中HMS的高含量也是农产品安全的挑战。过度摄入含有HM的食物会对人类健康造成不可逆转的伤害(Qin等,2021)。根际是植物吸收养分和微量元素的关键,它是土壤植物 - 微生物相互作用的界面。土壤中的重金属离子必须通过植物根部进入植物的体内。作为与植物最近的邻居,根微生物通过参与土壤腐殖质的形成和转化,土壤中养分的循环等,改善土壤结构和土壤肥力。同时,根微生物还可以分泌植物激素,以促进农作物对养分的吸收和利用,并增加农作物的根生长和生物量(Etesami和Maheshwari,2018; Manoj等,2020)。然而,高浓度的HM会通过诱导微生物代谢性疾病来引起非生物压力(Wyszkowska等,2013),例如蛋白质变性,细胞膜瓦解,改变酶特异性酶,特异性酶,破坏细胞功能和DNA结构(Abdu等,2017年的结构;微生物社区。值得注意的是,由HMS压力引起的根微生物结构和数量的变化可以严重影响根系的生态平衡,从而导致农作物生长的下降和农产品的质量(Shen等,2019)。因此,为了确保粮食安全和人类健康,迫切需要寻求适当的措施(土壤改善和微生物社区法规),以补救农田土壤中的HMS污染。

磷酸盐溶解微生物

磷酸盐溶解微生物PDF文件第1页

磷酸盐溶解微生物PDF文件第2页

磷酸盐溶解微生物PDF文件第3页

磷酸盐溶解微生物PDF文件第4页

相关文件推荐

2024 年
¥1.0
2024 年
¥3.0
2023 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
1900 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2020 年
¥2.0
2023 年
¥2.0
2023 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2023 年
¥2.0
1900 年
¥1.0
2024 年
¥2.0
2024 年
¥3.0
2021 年
¥1.0