Loading...
机构名称:
¥ 1.0

通过参数下转换(PDC)光子对提供的量子相关性是量子信息科学的强大工具。可以利用极化,空间和时频程度来产生强大而可验证的两光子纠缠[1-4]。这些相关性启用了诸如量子状态信息[5,6],设备独立量子密钥分布[7]和远程状态准备[8-12]等技术。为了利用这些资源来执行此类任务,有必要控制量子相关性的产生,并以期望的自由度开发一致的测量技术。光子学为实施多方量子通信协议和长距离量子实验提供了无可争议的平台[13 - 15],但每个光子自由度都带来相关的优势和挑战。尤其是时间频率的自由度,提供了高维量子字母,非常适合基于纤维的通信网络和集成的波导设备[3,14,16]。纠缠在PDC来源中也自然存在,并且可以使用脉冲成型技术和材料分散工程来控制[17]。然而,PDC状态的基本时间频率模式,也称为暂时的Schmidt模式[18],无法与传统的时间或频率测量值直接解析。最近开发了控制和操纵纠缠状态的时间模式结构的方法,为支持纠缠的光子技术提供了强大的资源[19 - 24]。但是,将这些方法应用于量子状态仍然没有探索。在这项工作中,我们使用量身定制的二分时量子量子相关性来远程准备光子时间模式状态。使用色散工程非线性光学和超快脉冲成型的浮动器工具箱,我们对自定义的时间模式进行投影测量,以对纠缠光子对的一半进行定制的时间模式,并测量其伙伴的条件谱图,如图1。我们通过实验探索PDC状态的相关时间模式结构,既有传统的时频相关性和工程性的脉冲时间模式钟形相关性。这样做,我们还证明了时间频率

光子时间模式的远程投射状态

光子时间模式的远程投射状态PDF文件第1页

光子时间模式的远程投射状态PDF文件第2页

光子时间模式的远程投射状态PDF文件第3页

光子时间模式的远程投射状态PDF文件第4页

光子时间模式的远程投射状态PDF文件第5页

相关文件推荐

2025 年
¥4.0
2024 年
¥2.0
2023 年
¥2.0
2024 年
¥1.0