大脑启发的计算旨在了解大脑的机制,并重现其计算能力,以推动计算机科学领域的各个领域。深度学习是一个成功的例子,可以通过利用简化的人工神经网络(ANN)来大大改善模式识别和分类的领域。为了进一步利用大脑的计算能力,因此取得了更大的进步,各种研究都取决于尖峰神经网络(SNN),这些神经网络(SNN)紧密地模仿了大脑的计算[2,10,12,14]。snns通过采用神经元模型来实现大脑样的计算,这些神经元模型在传入的尖峰和时间方面改变了内部状态。特别是,各种研究表明了神经元模型的丰富时间动力学,其内部状态逐渐变化为显着的计算性状[8,11]。因此,新兴研究积极投资基于此类复杂模型的SNN的潜在收益。例如,史密斯(Smith)的研究提出了一种基于复杂神经元模型的新组合范式[12,13]。同时,Ponulak等。重现大脑的导航功能[9],其他作品采用SNN进行特征推断[16]或满意度问题[4]。为了部署新兴的SNN工作负载,研究人员依赖SNN模拟系统模拟复杂的神经动力学。不幸的是,现有的SNN模拟系统遭受了高计算开销的困扰,因此,设计一个能够快速且能富有能力的SNN模拟的系统,高度要求。
主要关键词