Loading...
机构名称:
¥ 6.0

肯尼亚的车辆数量每年以12%的速度增长,截至2018年,国家注册舰队为400万。所有这些车辆都必须定期估值,原因是多种原因不限于保险,转售,租赁和会计。因此,重要的是要有一个易于使用,可靠,易于使用的系统,该系统可以确定车辆的价值,并给出有关该车辆的某些特性。从不同估值师获得的相同车辆获得的值的变化暴露了当代汽车估值系统中的违规行为。在需要快速汽车估值服务时,缺乏一致,准确且随时可用的工具来执行所需的估值,因为获得估值的汽车的主要方法是与有执照的评估公司或保险代理商的专家联系。现有的汽车估值机制主要依靠专家意见和使用公式来计算二手车的复合年度折旧,该折旧是从0英里处的价格中减去的,多年来根据通货膨胀进行了调整。已经尝试通过使用机器学习来自动化车辆估值,这产生了令人鼓舞的结果。已采用多元回归分析来确定对车辆值最大的车辆性质,并预测不同参数的给定值。这种方法也已成功地用于其他领域,以估计土地和FMCG等资产。在这项研究中,采用多代理系统体系结构封装了三个用于车辆价值预测的回归模型,以及一种自然语言处理模型,以从非结构化文本中从车辆描述中提取车辆功能。构建和培训了这三个模型以生成预测,每个模型都利用了基于SVM的回归和神经网络(ANN)在WEKA中的实现,或者在WEKA中实现了,或WekadeEplearning 4J版本3.8.5提供的深度学习回归。最佳性能模型为车辆估值提供了可靠的选择,其相对平均误差为11%,仅在可能的200,000条记录中接受了1000行数据的培训,因此被用于功能原型的设计。鉴于这项研究的时间,预算和计算资源限制,在给定时间,数据和计算能力的情况下,提高预测模型的性能有很大的潜力。

车辆估值的混合策略 - UON数字存储库

车辆估值的混合策略 -  UON数字存储库PDF文件第1页

车辆估值的混合策略 -  UON数字存储库PDF文件第2页

车辆估值的混合策略 -  UON数字存储库PDF文件第3页

车辆估值的混合策略 -  UON数字存储库PDF文件第4页

车辆估值的混合策略 -  UON数字存储库PDF文件第5页