摘要让D为简单的Digraph(有向图),带有顶点s v(d)和弧集a(d),其中n = | v(d)| ,每个弧都是有序的一对不同的顶点。如果(v,u)∈A(d),则u被视为d中V的邻居。最初,我们将每个顶点指定为已填写或为空。然后,应用以下颜色更改规则(CCR):如果一个填充的顶点V具有一个空的邻居U,则U将被填写。如果V(d)中的所有顶点最终都在CCR的重复应用下填写,则初始集合称为零强迫集(ZFS);如果不是,那是失败的零强迫集(FZFS)。我们在Digraph上介绍了零强迫f(d),这是任何FZF的最大基数。零强制数z(d)是任何ZF的最小基数。我们表征具有f(d) 我们还用f(d)= n -1,f(d)= n -2和f(d)= 0表征挖掘,这导致了任何顶点是ZFS的挖掘物的表征。 最后,我们表明,对于任何整数n≥3和具有k我们还用f(d)= n -1,f(d)= n -2和f(d)= 0表征挖掘,这导致了任何顶点是ZFS的挖掘物的表征。最后,我们表明,对于任何整数n≥3和具有k