脑电图(EEG)的运动轨迹解码,用于有效控制大脑计算机界面(BCI)系统,一直是研究的活跃领域。这些系统包括假体,康复和增强设备。在这项工作中,在掌握和升力运动过程中使用前移动前的EEG信号估算三维(3D)手运动学。从公开可用数据库Way-eeg-gal中使用的十二个受试者的数据用于此目的。多层感知器(MLP)和基于卷积神经网络长期记忆(CNN-LSTM)的深度学习框架提议利用在实际移动执行之前编码的EEG数据中编码的运动神经信息。使用以七个不同范围过滤的脑电图数据分析频段特征,以分析手动运动学解码。最佳性能频带功能将采用不同的EEG窗口尺寸和滞后窗口进行进一步分析。此外,使用剩余的受试者(LOSO)方法进行了受试者间的手轨迹解码分析。Pearson相关系数以及手轨迹用于评估所提出的神经解码器的解码性能。这项研究探讨了在触及和掌握任务期间使用EEG信号进行主题间3D手轨迹解码的可行性。所提出的CNN-LSTM解码器能够分别在三个轴上达到最高0.730和0.627的大相关性,分别在受试者内和受试者间设置中,从而为实用BCI应用提供了有关从移动前EEG信号中解码手部位置的可行信息。
主要关键词