注意力缺陷多动障碍 (ADHD) 是一种神经发育障碍,其特征是不同程度的冲动、多动和注意力不集中。治疗这种疾病并尽量减少其对学习、工作、建立关系和生活质量的负面影响在很大程度上取决于早期识别。脑电图 (EEG) 是一种有用的神经成像技术,可用于了解 ADHD。本研究通过使用固有时间尺度分解 (ITD) 分析 EEG 信号来检查 ADHD 儿童的大脑活动。由 ITD 产生的模式的不同组合(称为固有旋转分量 (PRC))用于提取各种基于连接的特征(幅度平方相干性、交叉功率谱密度、相关系数、协方差、相熵系数、相关系数)。在闭眼休息时记录了 15 名 ADHD 儿童和 18 名年龄匹配的健康儿童的 EEG 信号。使用从纵向和横向平面中选择的不同通道对来计算上述特征。通过各种机器学习方法和 10 倍交叉验证法,对所提出的方法进行评估,以区分 ADHD 患者和健康对照者。纵向和横向平面的分类准确率分别在 92.90% 至 99.90% 和 91.70% 至 100.00% 之间。我们的结果支持了所提出方法的出色性能,并且在识别和分类 ADHD 方面比类似研究取得了重大进展。
主要关键词