本文概述了当前有向图(有向图)上信号处理 (SP) 的现状。方向性是许多现实世界(信息、交通、生物)网络所固有的,它应该在处理和学习网络数据中发挥不可或缺的作用。因此,我们全面回顾了有向图上 SP 的最新进展,通过与无向图的结果进行比较提供见解,讨论新兴方向,建立与机器学习相关领域和统计学因果推断的联系,并说明它们与及时应用的实际相关性。为此,我们首先基于有向图信号变化的新测量方法,调查(正交)信号表示及其图频率解释。然后我们继续讨论滤波,这是推导有向图上 SP 的综合理论的核心部分。事实上,通过基于过滤器的生成信号模型,我们探索了一个统一的框架来研究逆问题(例如,网络上的采样和反卷积)、随机信号的统计分析以及从节点观测到的有向图的拓扑推断。
主要关键词