摘要 - 目的:基于脑电图(EEG)的脑部计算机界面(BCI)可以在人脑和计算机之间进行直接通信。由于脑电图信号的个体差异和非平稳性,此类BCI通常需要在每次使用之前进行特定于特定的校准会话,这是耗时且用户不友好的。转移学习(TL)已提议缩短或消除此校准,但现有的TL方法主要考虑使用局部设置,在此设置中,所有未标记的EEG试验都来自新用户。方法:本文提出了测试时间信息最大化集合(T-Time),以适应最具挑战性的在线TL方案,其中未标记的新用户的脑电图数据列入流中,并立即执行分类。T时间从对齐的源数据中初始化多个分类器。当未标记的测试EEG试验到达时,首先使用集合学习预测其标签,然后通过条件性熵最小化和自适应边缘分布正则正规化来更新每个分类器。我们的代码已公开。结果:基于三个公共运动图像的BCI数据集进行的广泛实验表明,Time Over-Ever-Ever-Ever-Ever-Over大约20种经典和最先进的TL方法。明显:据我们所知,这是基于无校准的EEG BCIS的测试时间适应的第一项工作,使插件的BCIS成为可能。
主要关键词