了解CNC@PDA@Zn 2+诱导的NSLTP2定位变化的功能意义,我们测试了NSLTP2的抗病毒功能。虽然NBLTP1在TMV感染中的作用得到很好的特征,但我们系统地探索了NSLTP2在TMV感染中的作用。应力表达分析表明,在2 dpi的接种叶中,NSLTP2的表达与TMV-GFP显着增加,其表达在6 dpi的全身性叶片中也显着升高(图S7),这表明NSLTP2在抗病毒防御中的潜在作用。接下来,我们利用烟草病毒(TRV) - 介导的基因沉默来分析NSLTP2在TMV抗性中的作用。随后,本尼亚氏菌叶具有TRV1 + TRV2(TRV:00)或TRV1 + TRV2:NSLTP2:NSLTP2(TRV:NSLTP2)12天,RT- qPCR分析显示,NSLTP2在TRV中的NSLTP2表达显着 5b)。 然后,我们用TMV-GFP机械地接种了第6和7叶,并观察到在2、4和6 DPI下紫外线下的GFP运动以跟踪TMV分布。 如图所示 5A,在接种叶片的接种叶片中观察到GFP荧光信号,而QPCR分析表明,沉默的植物中TMV-GFP核酸水平明显高于对照组(图5b)。然后,我们用TMV-GFP机械地接种了第6和7叶,并观察到在2、4和6 DPI下紫外线下的GFP运动以跟踪TMV分布。如图5A,在接种叶片的接种叶片中观察到GFP荧光信号,而QPCR分析表明,沉默的植物中TMV-GFP核酸水平明显高于对照组(图5C)。 在4 DPI时,GFP信号出现在沉默的植物的全身叶子中,而在控制植物的全身叶子中未检测到GFP信号。病毒核酸的QPCR分析产生了相似的结果(图 5d)。 5e)。5C)。在4 DPI时,GFP信号出现在沉默的植物的全身叶子中,而在控制植物的全身叶子中未检测到GFP信号。病毒核酸的QPCR分析产生了相似的结果(图5d)。5e)。通过6 DPI,GFP信号在沉默的植物中更为明显,TMV-GFP在其全身叶片中显着积累(图这些结果表明NSLTP2沉默促进了TMV-GFP感染。随后,我们比较了